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1 Introduction

Economists have chosen two avenues to understand human interactions in repeated games. The
theorists have focused on presenting learning algorithms and proving results on the convergence
properties of these algorithms. Experimentalists have used human subjects in laboratory environ-
ments to better understand behavior in these interactions. In this paper, we develop a third avenue,
computation, which complements both the theoretical and experimental literature. In particular,
we build computational agents which exhibit behavior consistent with the behavior of human sub-
jects in two repeated coordination games. Using this computational testbed, we run simulations of
experiments, develop testable hypotheses, and then verify these hypotheses with human subjects
in the lab.

We focus on repeated coordination games, because by definition they must have multiple equi-
libria. Because these games have multiple equilibria, many experiments have been run on these
games to examine the equilibrium selection process. Therefore there are some well accepted behav-
iors which have been observed repeatedly in the experimental lab. In one game, the minimum-effort
coordination game, the players have identical interests. In experiments with minimum-effort coor-
dination games, Van Huyck, Battalio & Beil (1990) and Goeree & Holt (2005) show that subjects
typically converge to a Nash equilibrium, but which Nash equilibrium depends on the number of
subjects and the risk involved. In the other game, the battle of the sexes game, the players have
opposing interests. Often in the battle of the sexes game, subjects learn to alternate between the
two equilibrium outcomes as exhibited in Rapoport, Guyer & Gordon (1976) and McKelvey &
Palfrey (2001).

The computational agents’ decisions are made based on a learning algorithm. The major dif-
ference between this and previous learning algorithms is that we focus on “short” games that are
repeated 100 rounds or less. Rather than developing an algorithm that has guaranteed long run
convergence properties, we develop an algorithm that can generate data that resembles the data of
human subjects in the experimental lab for these “short” games.

The task of developing computational agents could shed new light onto the theory of learning
in games. The theory literature on learning in games has typically focused on learning algorithms
with guaranteed convergence to some set, or small superset, of the Nash equilibria. The task of
creating agents that mimic humans is different. By thinking of this new task, we may gain new
insight into the decision making process in repeated games. For example, the algorithm proposed
in this paper uses a pattern recognition scheme. Pattern recognition has been ignored in most
of the theory literature, even though patterns have been observed in the experimental laboratory.
Focusing on this new task may help uncover aspects that were previously missing in the theory.

This computational model of learning can also compliment experimental economics. We use
computational agents to run simulations for both of these coordination games for a variety of
experimental parameters. From these simulations, we develop hypotheses on human behavior
which are then tested in the lab. We can run the simulations without any hypothesis in mind, and
then develop these testable hypotheses from the simulation data. Since this is an alternative to
economic theory, it may provide new insights into the human decision making process that haven’t
been examined in the theoretical literature.

The rest of the paper proceeds as follows. Section 2 discusses the related work in this area.
Section 3 lays out the model. This includes the setup of the games and equilibria, as well as a
detailed description of the learning algorithm. Section 4 compares experimental data to simulation
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data from my algorithm as well as other learning algorithms. It also includes simulation results
for both games which are used to develop testable hypotheses for experiments. Section 5 gives
the experimental design as well as a comparison of the experimental and simulation results. We
provide concluding remarks in Section 6.

2 Related Work

The theoretical literature on learning in repeated games started with the introduction of fictitious
play by Brown (1951). In each round of fictitious play, each player best responds to the average of
past plays. Fictitious play has been shown to converge to Nash equilibria beliefs for two player zero-
sum games (Brown 1951), 2 x 2 games (Miyasawa 1961), potential games (Monderer & Shapley
1996), and many classes of supermodular games (Milgrom & Roberts 1991, Hahn 2008, Berger
2007). Fictitious play has garnered much interest from game theorists because of its simplicity and
its nice convergence properties. However, fictitious play does have desirable equilibrium selection
properties.

Another common approach is to use evolutionary game theory as introduced with the concept
of the evolutionary stable strategies in Smith & Price (1973). In these models, strategies with
random mutations compete against each other based on a fitness measure. Using an evolutionary
model, Friedman (1991) shows that ESS are a subset of Nash equilibria. Adding randomness to
the evolutionary model, Kandori, Mailath & Rob (1993) and Young (1993) show convergence to
risk dominant equilibrium in 2 x 2 symmetric games. Hart (2002) introduces a model in which the
unique ESS leads to the subgame perfect Nash equilibrium. These evolutionary models provide
stronger equilibrium selection properties than fictitious play, but they typically take thousands of
rounds to attain these equilibria.

Most of the literature examining interaction in repeated games has focused on long run con-
vergence properties; a few papers develop computational agents which act like human subjects.
Arifovic & Ledyard (2005) build computational agents to be used as a testbed for experiments on
the Groves-Ledyard mechanism. In particular, the mechanism has one parameter which plays an
important role in the speed of converge. They make predictions about optimal values of this param-
eter with their computational testbed, and then confirm these predictions with experiments. Their
learning algorithm is a combination of a genetic algorithm with some behavioral intuition. Their
computational agents are able to converge quickly, on average 20 rounds. However, their algorithm
strongly favors convergence to a single choice. My algorithm is able to get quick convergence in
some games, but in addition it also converges to move complex strategies in other games.

One of the key features of my algorithm is a pattern recognition scheme. Pattern recognition
is an important aspect of human decision process. Sonsino & Sirota (2003) find that over half
of the human subjects converge to patterns of Nash equilibria (where different NE are played
in subsequent rounds) in a variation of the battle of the sexes game. The only way that these
patterns of Nash equilibria can be sustained is if players are recognizing patterns. However, with
the exception of a few papers, previous learning models have not allowed agents to recognize these
patterns in repeated interactions.

Sonsino (1997) proposes a theoretical model which players recognize patterns, and play con-
verges to a sequence of Nash equilibrium with probability one. This would include the alternations
observed experimentally in the battle of the sexes. However, he does not address how these pat-
terns arise, rather that the players are able to recognize them once they have been played. Also,
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he does not propose a specific mechanism from which the players are able to recognize patterns.
In another theoretical paper, Lambson & Probst (2004) create a model where players find similar
patterns in the history, and best respond to these patters. Their learning algorithm converges to
the convex hull of the set of Nash equilibria in games where fictitious play converges to the set
of Nash equilibria. This paper does not give a specific technique for determining the length of
patterns that players will recognize. Rather, they assume that players only recognize patterns of a
fixed length, and then examine the convergence of these players. Unlike these theoretical pattern
recognition models, we actually implement computational agents which have a specific mechanism
to recognize patterns of different lengths and select the optimal pattern lengths. Therefore, these
agents are able to converge to single Nash equilibria as well as more complex patterns of Nash
equilibria.

3 Model

3.1 Game

Before introducing the algorithm, we introduce the general game. The algorithm works on any
variation of this general game. The game consists of n players N = {1, 2, . . . , n}. The set of
strategy profiles is S = S1×S2×· · ·×Sn, where the player’s action comes from the infinite strategy
space si ∈ Si = [0, 1]. A specific strategy profile is the set of all player’s actions, denoted by s. Let
s−i denote the actions of all players other than player i in strategy profile s. Each player has a
payoff function which maps strategy profiles to real numbers, πi : S → R.

The analysis in this paper focuses on two specific games from the general class of games described
above: the minimum-effort coordination game and the battle of the sexes game. Both of these
games are generalized to the continuous action space. The minimum-effort coordination game has
n players, N = {1, . . . , n}, each of which exerts a costly effort si ∈ Si = [0, 1]. The payoff for player
i is a term proportional to the minimum effort of all players, minus the cost of their own efforts.
More formally,

πi (si, s−i) = min
j∈N

sj − csi

for some cost parameter c. The continuous version of the battle of the sexes game has two players,
N = {1, 2}. Each player chooses a location on the unit interval, si ∈ [0, 1]. Based on the player’s
locations, the payoff function is,

π1 (s1, s2) = (2s1 − 1− b) (2s2 − 1− b)
π2 (s1, s2) = (2s1 − 1 + b) (2s2 − 1 + b)

for some parameter b. To get a better understanding of the battle of the sexes payoff functions,
consider the two by two game where the payoffs are the same, but the actions space is now restricted
to two choices, Si = {0, 1}. The payoff matrices for different values of b are shown in Figure 1.
There are a few things to notice about variations in b. First, it is symmetric around 0,o.e. the game
is the same for b = 0.1 and b = −0.1 except that the players roles are switched. Without loss of
generality we will only consider b ≥ 0. When b is close to zero, the payoff difference between the
equilibria at (0, 0) and (1, 1) is small while the cost of not coordinating (playing (0, 1) or (1, 0)) is
high. When b is close to 1, then the payoff difference between the two equilibria is large, but the
cost of not coordinating is low. So this b parameter can be thought of as a symmetry parameter.
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0 1

0 (1, 1) (−1,−1)

1 (−1,−1) (1, 1)

0 1

0 (2.25, .25) (−.75,−.75)

1 (−.75,−.75) (.25, 2.25)

0 1

0 (4, 0) (0, 0)

1 (0, 0) (0, 4)

b = 0 b = .5 b = 1

Figure 1: Battle of the sexes game for different values of b.

3.2 Equilibria

3.2.1 Minimum-Effort Coordination Game

The set of Nash equilibria of the minimum-effort coordination game depends on the parameter c. If
c > 1, then the cost of effort is greater than the benefit, so it is a dominant strategy for each player
to play the minimum effort, si = 0. If c < 0, since the cost of effort is negative, it is a dominant
strategy for each player to exert the maximum effort, si = 1. The case that is usually studied is
0 ≤ c ≤ 1. In this case, a Nash equilibrium is any strategy where all players exert the same effort.
The set of Nash equilibria is then defined by,

NE = {s|si = sjfor all i, j ∈ N}

Since the strategy space is infinite, there are infinite Nash equilibria. These equilibria are Pareto
ranked. The equilibrium where all players exert the lowest effort is the Pareto-worst equilibrium,
as each player gets payoff πi (0, 0, . . . , 0) = 0. The Pareto-optimal equilibrium is the equilibrium in
which each player exerts the maximum effort and gets payoff πi (1, 1, . . . , 1) = 1− c.

A player can always guarantee a payoff 0 by playing 0, so the minmax payoff in this game is 0 for
all players. By the folk theorem for repeated games, this implies that any strategy that guarantees
the players at least 0 is an equilibrium in the infinitely repeated game.

3.2.2 Battle of the Sexes Game

In the continuous battle of the sexes game, when b > 1, each player has a strictly dominant strategy,
so there is a unique equilibrium. The more interesting case occurs when 0 ≤ b ≤ 1, in which there
are three equilibria. Given that player 2 is located at s2, then the best response function for player
1 is as follows,

BR1 (s2) =


0 s2 <

1+b
2

[0, 1] s2 = 1+b
2

1 s2 >
1+b

2

Given that player 1 is located at s1, then the best response function for player 2 is,

BR2 (s1) =


0 s1 ≤ 1−b

2

[0, 1] s1 = 1−b
2

1 s1 >
1−b

2
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Therefore, the three Nash equilibria are (s1, s2) = (0, 0) ,
(

1−b
2 , 1+b

2

)
, (1, 1). The equilibrium

(s1, s2) =
(

1−b
2 , 1+b

2

)
is Pareto-dominated by the other two equilibria. However, the other two

equilibria are not Pareto rankable. Player 1 prefers the equilibrium (s1, s2) = (0, 0) and player 2
prefers the equilibrium (s1, s2) = (1, 1).

In this game, each player has a strategy which guarantees a payoff of 0, and this turns out to
be the minmax payoff. By playing s1 = 1−b

2 , player 1 will get a payoff of zero regardless of what
player 2 plays. Similarly, player 2 can guarantee zero by playing s2 = 1+b

2 . By the folk theorem,
this implies that any strategy where the players are guaranteed a positive average payoff is an
equilibrium of the infinitely repeated game. This includes the strategy where the players alternate
between the two endpoints, which gives an average payoff of 1/2

[
(1− b)2 + (1 + b)2

]
per round.

3.3 Algorithm

In each period of a repeated game, the algorithm determines which choice each agent makes. This
choice depends on the history of play as well as the current state of the agent. After each agent
has made their choice, the choices and payoffs are revealed to all agents. The agents then update
their history and current state, and make their choice for the following round.

Two main features of this algorithm are the pattern recognition scheme and the agent’s states.
The experiments of Sonsino & Sirota (2003) show that human subjects are able to sustain non-
trivial patterns of Nash equilibria. Even in 2-by-2 games, the probability of sustaining a pattern
of Nash equilibria for n rounds by random choice decreases exponentially as n increases, yet the
subjects are still able to sustain these patterns. The human subjects’ ability to sustain these
patterns of equilibria provide evidence that they are in fact recognizing these patterns. Therefore,
pattern recognition is a natural feature when modeling human behavior in repeated interactions.
My pattern recognition scheme is a modification of the k-nearest neighbor classification algorithm
from machine learning. Patterns are recognized by first identifying the current play (the most
recent choices in the history) and then finding previous plays that are similar to the current play.
The prediction for next round is a weighted average of the outcomes of these similar plays. In each
round, the agent makes their choice based on their current state, which is given by two parameters,
γ and σ. The γ parameter represents the current level of confidence for an agent. This is determined
by how well that agent is predicting what the other agents will do. The σ parameter represents
the agent’s satisfaction of the current play of the game. If the agent is not satisfied, and wants to
change what is happening in the game, then σ is close to 1. If the agent is satisfied with how the
game is going then σ is close to 0. When all agents have high values of γ and low values of σ, then
each agent’s choice has low variance and each agent is satisfied with the predicted outcome of their
choice, so the algorithm has converged.

Another important aspect in the algorithm is that the agents are not able to calculate exact
best-responses to their predictions. Instead, the agents determine best responses by randomly
sampling from the strategy space, and keeping the strategy that gives the highest payoff. This is
important for two reasons. First, it allows for completely general payoff functions. Since the explicit
best response function isn’t required, the payoff functions need not be continuous or differentiable.
Also, it allows agents to have different levels of intelligence by changing the number of samples they
take. For example, a very intelligent agent has a good grasp of the payoff function, and therefore
is able to find the best response. This can be modeled by an agent who takes a large number of
random samples to find the best response. Conversely, a very unintelligent agent is not able to find
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the best response. This can be modeled as an agent that takes a very small number of samples to
find the best response.

The explanation of the algorithm is divided up into four parts: notation, preliminary initial-
ization, round k action, and preparation for round k + 1. For notational purposes, the superscript
typically denotes the agent and the subscript denotes the round.

3.3.1 Notation

Each agent has a database of information that is used to help make their choice in each round. At
the start of each round, each agent has two parameters in their database, the confidence parameter
γ and the satisfaction parameter σ. These parameters for agent i in round k are denoted by γik
and σik. The agents use these parameters to help make their choice. Agent i’s choice in round k
is represented by xk(i). The choice of all agents in round k is given by xk, which yields payoffs
πi (xk) = πik for agent i.

After the agent makes their choice, they update their database of information in preparation
for the next round. Each agent makes a prediction about what the other agents will play in the
following round. Let x̂ik(j) be agent i’s prediction for agent j’s play in round k. The full prediction
vector, x̂ik, consists of predictions for all of the other agents.

As the game progresses, each agent creates a quasi-best-response matrix. Agent i’s quasi-best
response matrix at round k is denoted by Qik. This matrix helps the agent determine what they
should choose after they have made their prediction. To do this, the agent groups similar strategy
profiles together in the quasi-best-response matrix. The agent then determines which play is best
against these similar strategy profiles by randomly sampling responses from the strategy space. In
the future, when a similar strategy profile arises, the agent uses this quasi-best-response matrix
to help remember what they did in the past. From this quasi-best-response matrix, the agent
determines the quasi-best-response for their prediction for round k, which is denoted by xik

∗. More
details about the quasi-best-response are given below in the description of the algorithm in the
preparation for round k + 1 section.

Each agent also keeps track of their best and worst outcomes. To do this, each agent randomly
chooses J strategy profiles from the uniform distribution on the joint strategy space S = [0, 1]N .
Next, they calculate the payoffs for each of these profiles, and save the strategy profiles which yield
the highest and lowest payoffs, x̄ik and xik respectively. These are referred to as the highest and
lowest known choices for agent i in round k. The payoffs for these strategy profiles, π̄ik and πik, are
referred to as the highest and lowest known payoffs for agent i at round k.

All of this information is stored in the agent’s database, and is available when they are making
their choice in round k.

3.3.2 Initialization

Many learning algorithms contain multiple initialization periods, where the agents choose randomly
in the strategy space. Since the focus of this paper is not long run convergence, but rather short
run behavior, the initialization period has to be short. Before the first choice is made, the agents
randomly choose J strategy profiles to determine their initial highest and lowest known payoffs,
x̄i0 and xi0 respectively. Each agent then makes the initial predictions about the other agents by
randomly drawing a number from the uniform distribution on [0, 1], that is xi1(j) ∼ U [0, 1]. Finally,
each agent starts with the lowest possible confidence level, γi1 = 10. They also start with the highest
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satisfaction parameter, σi1 = 0, because they have no reason to try to change the outcome of the
game yet. With these initial parameters, the algorithm is ready to run.

3.3.3 Round k

Entering round k, agent i has a database of information which is used to make a choice in round
k. The choice in round k is a random number from a beta distribution with mean µ and variance
ν2. The mean of the distribution is a convex combination of the quasi-best-response, xi∗k, and the
strategy which yields highest known payoff for agent i at round k, x̄ik. The weight on each term
is determined by the current level of satisfaction. If the agent’s satisfaction level is high ( σik = 1)
then they play the quasi-best-response for their prediction. If the agent is not satisfied ( σik < 1),
then they try to move the outcome towards the point which yields their highest known payoff. That
is,

µ = σki x
i∗
k + (1− σki )x̄ik

The variance of the distribution is inversely proportional to the current level of confidence1.
The proportionality constant is ρ, so the variance is,

ν2 =
1
ργik

As the confidence level of the agent increases, the choice distribution has lower variance, and
therefore the choice is more accurate. When the agent is not confident about what the other agents
will do, then his choice distribution has high variance, and his choice is not as accurate.

After all agents have made their choices as described above, the payoffs are calculated. The
agents then learn the choices of the other agents as well as the payoffs of all agents. At this point,
the agents begin their preparation for round k + 1 by updating their database of information.

3.3.4 Preparation for Round k + 1

The agents have a variety of tasks to perform in preparation for round k + 1.

Update extremes As the game progresses the agents become more acquainted with the payoff
function. To model this, each round the agents update their highest and lowest known payoffs by
taking J random samples from the joint strategy space. For each random sample zj , the payoff
vector is calculated. If the payoff for agent i from the sample is higher than the highest known
payoff for agent i in round k, then the agent sets the highest known choice for round k + 1 to
x̄ik+1 = zj and the highest know payoff round k + 1 to π̄ik+1 = πi (zj). If none of the payoffs from
the J sample points are higher that the highest known payoff for agent i at round k, then the
highest known choice and payoff from round k are carried over to round k + 1, i.e. x̄ik+1 = x̄ik and
π̄ik+1 = π̄ik. The same update is performed for the lowest known play and payoff.

1It is not possible to have a distribution over a closed region, if the variance is high, and the the mean is sufficiently
close to the endpoints. If this is the case, then it is corrected by using a modified beta distribution with mass point
on the endpoint.
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Prediction for round k + 1 In order to make a choice in round k + 1 it is useful for the agents
to have some prediction about what their opponents are going to do in round k+1. The prediction
scheme used by the agents is a modification of the nearest neighbor classification algorithm from
machine learning. The goal of the prediction scheme is to make a prediction for xk+1. Since
there are N agents, the agents choices at round k are given by the vector xk ∈ RN . A pattern
is vector combining one or more of these choice vectors. For example, a pattern of length 3 is
[ xk xk+1 xk+2 ]. The agents divide the history of choice into the current pattern, previous
patterns, and outcomes. Each previous pattern has a corresponding outcome. The algorithm
makes a prediction for the outcome of the current pattern. The agents determine which of the
previous patterns are closest to the current pattern. Then the agents prediction is a weighted sum
of the outcomes of the closest patterns. The agents repeat this process for patterns of different
lengths, n. After the agent has done this for all values of n, he compares them, and determines
which pattern length provides the best prediction.

For example, consider a two player game with the history of play after eight rounds,

(0, 0) , (1, 1) , (1, 1) , (0, 0) , (1, 1) , (1, 1) , (0, 0) , (1, 1)

Let’s examine the prediction by agent 1 of what agent 2 will play in the ninth round. First,
agent 1 considers patterns of length 1. The current pattern is the most recent play, (1, 1). This has
been played four previous times in rounds 2,3,5 and 6. These are the closest patterns. When these
closest patterns have been played in the past, agent 2 has responded by playing 1,0,1, and 0 in the
respective following rounds. These are the outcomes for the four closest patterns. This is not good,
because agent 2 has played 0 half the time, and 1 half the time, so it is difficult to predict what
agent 2 will play in the next round based on patterns of length 1.

Next, agent 1 looks at patterns of length 2. The current pattern in this case is the play in the
previous 2 rounds, (0, 0) , (1, 1). This pattern has been played twice before in the past, in rounds 1-2
and 4-5. In response to this pattern, agent 2 has played 1 in both rounds 3 and 6. After patterns
of length 2, agent 2 always chose 1. Therefore, patterns of length 2 are better for prediction that
patterns of length 1.

More formally, at the end of the kth round, each agent considers patterns of different lengths n.
For each length, there are k−n previous patterns of length nN each. The agent forms the previous
patterns matrix X ∈ Rk−n×nN and the output matrix Y ∈ Rk−n×N ,

X =


x1 · · · xn
x2 · · · xn+1
...

...
xk−n · · · xk−1

 =


X1

X2
...
X2

 and Y =


xn+1

xn+2
...

xk


Each row of the previous patterns matrix is a single pattern, and these are denoted by Xm for

m = 1, . . . , k − n. The current prediction is the vector c ∈ RnN

c =
[

xk−n+1 · · · xk
]

Next, the agent finds the j rows of X which are closest to the current pattern c in terms of
Euclidean distance. To do this, the agent forms the distance vector by finding the length between
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the current point and each of the previous points,

d =


‖X1 − c‖
‖X2 − c‖

...
‖Xk−n − c‖


Let J be the set of indices of the j smallest terms in the distance vector d. That is dj ≤ dk for
j ∈ J and k 6= J . These indices correspond to the j rows of X which are closest to the current
point c.

The agent now determines which pattern length gives the best prediction. As exhibited in the
above example, the agent wants to choose the pattern length with the most similar outcomes. To
determine the optimal pattern length for each n, the agent takes the outcome of the j closest points,
and calculates the average of these points, Ȳ . Then the agent computes the variance of these j
closest points,

Vn =
∑
j∈J
‖Yj − Ȳ ‖

Now, the agent compares the variance for all considered pattern lengths and chooses the pattern
length with the smallest variance. If there is a tie, then the agent chooses the shorter pattern. Note
that average variances are higher in higher dimensions. This is not corrected for, which gives an
additional benefit to the shorter patterns, because shorter patterns are easier to recognize.

Once the agent has selected which pattern length to use, he forms a weighted average of the
closest outcomes. The closer the pattern is to the current outcome, the higher the weight is. The
patterns are weighted using a logistic function. The prediction for the next period is thus,

x̂ik+1 =

∑
j∈J Yje

d(j)∑
j∈J e

d(j)

Therefore, if the distance to each of the j closest patterns is 0, then the prediction is just the
average outcome from those j closest patterns. The agent makes their choice for period k+1 based
on this prediction.

Quasi-Best-Response The quasi-best-response helps the agent determine the best response
for his prediction for round k + 1. To do this the agent updates the quasi-best-response matrix
from the previous period, Qik. Each row of the quasi-best-response matrix consists of three items:
prediction about what the other agents will do, what agent i should do given that prediction, and
the payoff given that strategy profile. More formally row m has the terms,

Qik = [ qm−i qmi πi
(
qmi ,q

m
−i
)

]

Here, qm−i are the choices of the other agents, and qmi is the choice of agent i. Agent i updates
Qik as follows. First, agent i determines if the current prediction is similar to any of the entries
already in the quasi-best-response matrix. To do this, agent i chooses a set, R, of random strategies.
For each row of the quasi-best-response matrix, agent i calculates the payoff difference,

pdm =
∑
r∈R

∣∣πi (r,qm−i)− πi (r, x̂ik+1

)∣∣
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Next, the agents find the minimum payoff distance, pd∗ = min pdm. If the distance is small, i.e.
pd∗ < δ, then the two strategies are similar, and therefore are combined in the quasi-best-response
matrix. If pd∗ > δ, then the two strategies are not similar, so a new entry is created in the quasi-
best-response matrix. Let the threshold δ be a fraction of the difference between the highest and
lowest payoff,

δ =
π̄ki − πki

20
If pd∗ < δ, then the agent updates the row of the quasi-best-response matrix corresponding to

pd∗, call this row m∗. The agent takes the set of R strategies, and calculates the payoffs πi
(
r, x̂k+1

i

)
.

Let r∗ denote the strategy from R which maximizes πi
(
r, x̂k+1

i

)
. If this new strategy yields a higher

payoff than the current quasi-best-response, i.e. πi
(
r∗, x̂k+1

i

)
> πi

(
qmi ,q

m
−i
)
, then the row m∗ is

updated to qm
∗
−i = x̂k+1

i and qm
∗

i = r∗.
If pd∗ > δ, then the agent creates a new row for the quasi-best-response matrix, call this row

M +1. Again, the agent calculates the payoffs πi
(
r, x̂k+1

i

)
for all r ∈ R, with r∗ being the strategy

which yields the maximum payoff. The agent then updates the quasi-best-response matrix by
setting qM+1

−i = x̂k+1
i and qM+1

i = r∗.

Update γ The parameter γ measures the current level of confidence of the agent. When the
agent makes accurate predictions, his confidence increases. In preparation for round k+1, the agent
compares his prediction for round k that was made in round k − 1, x̂ik, with the actual play from
round k, xk. Based on this prediction and outcome, the agent updates his confidence as follows,

γk+1 =
α1

‖x̂ik − xk‖+ α2
γk

Therefore, if the Euclidean distance between the prediction and the actual outcome is less than
α1 − α2, then the confidence increases. The maximum possible increase in confidence is α1/α2.

Update σ The parameter σ represents the agent’s satisfaction at the current state of the game.
If the agent in not satisfied with the current outcome, then he may try to induce the other agents
to play something else in order to change the current outcome. If the agent’s attempt to move is
unsuccessful, then he will stop trying. For example, suppose two agents are coordinating at one of
the equilibria repeatedly in the battle of the sexes game. Agent 1 is at her optimal equilibrium,
and Agent 2 is at his least favored equilibrium. Agent 2 realizes that he can receive a higher
payoff at the other equilibrium. Therefore he will try to induce agent 1 to start playing the other
equilibrium. However, agent 1 may not change the way she is playing, even when agent 2 is starts
playing something else. If agent 2 has tried for a long time with no success, he will give up, and
start playing the original equilibrium. The entire process of trying to move and giving up is called
a moving session.

Agent i will start with the highest satisfaction possible. The satisfaction will remain at the
highest level until some event causes agent i to start a moving session. In order for the agent
to become dissatisfied, he has to have a good idea of what the other agents are going to play.
Therefore, agent i must have a confidence greater than γMS in order to start a moving session.
Given that agent i has confidence greater than γMS , he will start a moving session in two situations.
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If agent i knows that all agents receive higher payoffs at his highest known play, then he will try
to move there because everyone will receive a higher payoff. Also if agent i’s highest known payoff
increases agent i’s payoff by a large amount, and decreases the other agents’ payoffs by only a small
amount, then he will try to change the outcome. There are also some situations in which agent
i will not start a moving session, even if his confidence is greater than γMS . If moving to agent
i’s highest known play will increase agent i’s payoff by a small amount, but will decrease all other
agents payoffs by a large amount, then agent i will not try to change the outcome. Also, if agent
i has tried to move before unsuccessfully, then he will not try to move again until he has found a
better strategy.

Once the moving session has started, agent i will try to induce the other agents to play his
optimal strategy. If the play of the game is moving away from the play at the start of the moving
session, and towards the highest play for agent i, then agent i will continue the moving session. If
the play of the game does not movie towards the highest play for agent i, then that round will be
considered a failure. If the total number of failures become to high, then i will stop the moving
session.

To more formally define this event that triggers a moving session, consider the term,

Σi
k =

πi
(
x̄ik
)
− πi (xk)

1
N−1

∑
j 6=i πj

(
x̄ik
)
− πj (xk)

Σi
k will be referred to as the relative gain for agent i in round k. Agent i’s payoff at the highest

known play is always greater than his payoff at the current play, because the agent takes the current
play into account when updating his highest known play. Therefore, switching from the current
play xk to agent i’s highest known play x̂ik will always increase agent i’s payoff. So the numerator
of Σi

k will always be positive.
The agent will also keep track of the maximum relative gain for round k, Σ̄i

k, and the minimum
relative gain for round k, Σi

k. At the beginning of the game, agent i will start with maximum
relative gain of Σ̄i

0 = 0 and minimum relative gain of Σi
0 = −1. The agent will update these

extreme relative gains with the current relative gain when the current relative gain is more extreme
(higher than maximum or lower than minimum) and confidence is greater than γMS . The role of
the extreme relative gains is to ensure that the agent does not continuously try to move to a point
which the other agents refuse to move to.

Based on the current relative gain, the extremes relative gains, and the confidence, agent i
will determine whether or not to start a moving session. When the denominator of Σi

k is positive,
and hence Σi

k > 0, the other agents will benefit on average when switching from xk to x̄ik. So, if
Σi
k > Σ̄i

k and γik > γMS , then the agent will start a moving session because all agents will have
higher payoffs at x̄ik. When the denominator of Σi

k is negative, the other agents will get lower
payoffs on average when switching from xk to x̄ik. However, if Σi

k is very negative, then the average
decrease of the other agents payoff will be small compared to the increase for agent i. So if Σi

k < Σi
k

and γik > γMS then the agent will also start a moving session. To summarize, agent i will try to
move if Σi

k 6∈
[
Σi
k, Σ̄

i
k

]
and γik > γMS .

In the first round of the moving session, agent i will decrease from the full satisfaction level
σ = 1 to the level σ = σ0 < 1. Agent i will also set the number of failures to 0, f = 0. Agent i
should not expect the other agents to respond to this move until they have seen the play in second
round of the moving session and had at chance to respond to it in the third round of the moving
session. So the agent will remain with satisfaction σ = σ0 in the second round of the moving
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session, and this will not count as a failure. Starting in the third round, agent i’s satisfaction and
failures will depend on whether the other agents are responding to agent i’s move. In particular, if
the other agents are responding, and play is moving toward the highest known payoff, i.e.,

‖xk − x̂ik‖ > ‖xk+1 − x̂ik+1‖

then the satisfaction will increase, σk+1 = ξ̄σk and the number of failures will stay constant fk+1 =
fk (for some ξ̄ > 1). Alternatively, if the other agents are not responding, so play is not moving
toward agent i’s highest know payoff, i.e.

‖xk − x̂ik‖ < ‖xk+1 − x̂ik+1‖

then the satisfaction will decrease, σk+1 = ξσk and the number of failures will increase by one,
fk+1 = fk + 1.

When the amount of failures reaches the threshold fk = f̄ , then the session ends because the
other agents aren’t responding to the move. After the session ends, the amount of failures is set
back to 0, and the satisfaction is set back to the highest level σ = 1.

4 Simulation Results

To test the algorithm, we first compare simulations to some experimental results reported in the
literature. We then compare the simulations of my algorithm to simulations using fictitious play and
the algorithm proposed in Arifovic & Ledyard (2005). From now, fictitious play will be referred to
as FP, Arifovic & Ledyard’s (2005) algorithm as AL, and my algorithm as PR (pattern recognition).

4.1 Comparisons with Experiments

4.1.1 Minimum Effort Coordination Game

There have been several papers that run experiments with minimum effort coordinations games
with continuous strategy spaces. Goeree & Holt (2005) (GH from now on) run experiments on the
continuous minimum effort coordination game with group size N = 2. Each of their six sessions
involved ten subjects which played a game for ten rounds. At the beginning of each round, each
subject was randomly paired with another subject. Subjects were then asked to pick an effort
level from the range [110, 170]. After all subjects had picked their effort, their payoffs and their
partner’s choice were revealed. They ran two treatments of three sessions apiece; one with low cost
(c = 0.25), and another with high cost (c = 0.75). Their results are displayed in Figure 2. These
experiments show that the choice’s of the subjects in the high cost treatments become progressively
lower, and the choice’s of the subjects in the low cost treatments become progressively higher. In
addition, the authors point out that late in the experiment, the choices in different treatments are
separated by the mean of the range (140). GH also run similar treatments for 20 rounds, and find
that the adjustment of choices tends to happen in the first 10 rounds, and the play levels out after
that. These are the characteristics that are desired in the simulations using the PR algorithm.

The minimum effort coordination game experiments run in GH can be simulated with compu-
tational agents using PR to make their decision. One difference between the experiment and my
setup is that GH use different random matched pairs each round rather than fixed pairs through-
out the experiment. To correct for this, we set the satisfaction parameter σ = 0. The satisfaction
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Figure 2: Experimental results of continuous minimum effort coordination game from Goeree &
Holt (2005).

parameter allows the agents to induce the other agents to play some strategy. This parameter is
set to zero because it is difficult for one agent to induce another agent to play something when
they will both be randomly matched with another agent in the following round. The results from
the simulations are presented in Figure 3. As in the actual experiment, there is separation between
the high and the low cost treatments. In addition, the separation of the two treatments occurs
around the midpoint as observed in the experiments. Finally, most of the adjustment happens in
the first 10 rounds, and play levels out after that. So the agents in the simulations exhibit similar
dynamics and equilibrium selection properties to the human subjects in the continuous minimum
effort coordination game.

There have also been several papers which examine the effect of group size on coordination in
the minimum effort coordination game. Van Huyck, Battalio & Beil (1990) (VHBB) run experi-
ments with minimum effort coordination games with varying group size2. They find that for large
group sizes (N=14-16) with c = 0.5, subjects converge to the Pareto dominated equilibrium, where
all players exert the lowest effort. They also find that after failing to coordinate on the Pareto su-
perior equilibrium in large groups, these same subjects are able to converge to the Pareto superior
equilibrium 12 out of 14 times when matched in fixed groups of two. So even when the subjects
are used to playing the dominated equilibrium, they are still able to coordinate on the high effort
when matched in fixed pairs. This provides strong evidence that fixed groups of two should be able
to reach the Pareto superior equilibrium a large percentage of the time.

Knez & Camerer (1994) (CK) extend the result from VHBB by running similar experiments
with more group sizes, and again using c = 0.5. They find that as the number of subjects increases,
coordination on high effort strategies becomes more difficult. They also find that the biggest
difference occurs when increasing the number of subjects from two subjects to three subjects. They

2Their subjects have 7 choices rather than a continuum of choices.

13



110

120

130

140

150

160

170

3 6 9 12 15 18 21 24 27 30

E
ffo

rt

Period

c = 0.25 Sessions

c = 0.75 Sessions

c = 0.25 Average

c = 0.75 Average

Figure 3: Simulation of continuous minimum effort coordination game experiments with agents
using PR.

provide two reasons for this. First, picking an additional number from a random distribution will
lead to a lower minimum. The second explanation is that the belief structure becomes ambiguous
when increasing from two to three subjects, which causes players to more cautious when choosing
their effort level.

we run simulations of the minimum effort coordination game with different group sizes using
FP, AL, and PR to see if they match the experimental results above. For each group size, we run
300 simulations of 100 rounds each with cost c = 1/2. We show that the simulations using PR are
more similar to the experimental data than the simulations using FP and AL. The details of these
simulations are left to the appendix.

To examine the outcomes of these simulations, we look at the average choice in the last 10
rounds. By the last 10 rounds, every agent was playing within 0.05 of the other agents over 99%
of the time with FP, over 98% of the time with AL, and over 99% of the time with PR. So the
average over the last 10 periods is a reliable measure of the convergence of strategies3. This average
choice in the last 10 rounds is referred to as the convergence point of the simulation. The empirical
cumulative distribution functions of convergence points for each of these learning algorithms are
displayed in Figure 4. More coordination on the high effort outcomes is represented by ECDfs
that are further to the southeast. The ECDF corresponding to perfect coordination on the high
effort equilibrium would be 0% everywhere except 1. If the agent always converge on the low
effort equilibrium, then the ECDF would be 100% everywhere except 0. The ECDFs show that
the comparative statics on N match the experimental data for all three sets of simulations: as the
number of agents increases, coordination on Pareto superior equilibria become more difficult.

3The reason for using the average over the last 10 periods rather than the choice in the last period is to avoid
problems where all of the agents have played the same thing for 9 rounds in a row, but in the last round, one agent
changes what he plays.
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Figure 4: Empirical cumulative distribution functions of convergence points for FP, AL, and PR
for different group sizes.

15



0

.25

.50

.75

1

2 3 4 5 6 7 8 9

A
ve

ra
ge

C
ho

ic
e

-
L

as
t

10
R

ou
nd

s

Group Size

FP
AL
PR

Figure 5: Average Convergence Points for FP, AL, and PR for different group sizes.

The average convergence point for each group size are summarized in Figure 5. The average
convergence point is the expected outcome for a simulation, and corresponds to the mean of the
ECDF for that simulation. As shown in CK, the figure shows that in all three simulations, the
biggest difference in ability to attain the high effort outcome occurs when increasing group size
from two to three. The FP and AL simulations have relatively low convergence points for groups
of size two. The average convergence point for simulations with groups of two for FP is 0.51 and
for AL is 0.49. This is in contrast to the experiments run in VHBB which show that fixed pairs of
agents are able to converge to the Pareto superior equilibrium about 85% of the time. The average
convergence point of the PR simulations is 0.94 which is more in line with the coordination behavior
exhibited in VHBB by human subjects in the laboratory. Based on Figure 5, the PR algorithm
matches the experimental data better than both AL and FP.

4.1.2 Battle of the Sexes Game

Next we run simulations of the battle of the sexes game using the three different algorithms. The
battle of the sexes game, like the minimum effort coordination game, has multiple equilibria. But,
in the battle of the sexes game, the equilibria are not Pareto ranked. One desirable outcome that
has been observed in the literature is when players are able to alternate between the two equilibria.
This maintains the maximum welfare, but also yields equal payoffs for both players. While most
of the literature has focused on more complex extensions of the battle of the sexes game, this
outcome has been observed in the simple battle of the sexes game as in Rapoport, Guyer & Gordon
(1976) and more recently in Sonsino & Sirota (2003). To test to see if the learning algorithms can
obtain this outcome, we run 300 simulations of 100 rounds each of the battle of sexes game for each
learning algorithm. Each game consists of two players, and has cost c = 0.5.

When agents use FP to make their choice, two outcomes occur. Either the players converge to
one of the equilibria, or they start a cycle of non-coordination. In the non-coordination cycle, the
players will always choose the opposite location, and therefore it is not a Nash equilibrium and the
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payoff is the lowest possible. Out of the 300 simulations, they reach this non-coordination cycle 41
times. Every other time they converge to one of the two equilibria. When agents use AL to make
their choice, they have a tendency to converge to playing the same choice repeatedly. Therefore, it
difficult to converge to patterns of equilibria. In the simulations with AL, agents converge to one
of the two equilibria every time out of 300 trials. So neither FP or AL converge to the pattern of
Nash equilibria that has been observed experimentally.

Finally we run simulations where the agents use PR to make their choices. To determine
if agents converge to a pattern of equilibria, we develop two types of convergence. First, there
is convergence in strategies. Convergence in strategies occurs at the round when the difference
between any agent’s choice in two consecutive rounds is less than 0.05 for the remainder of the
game. This means the agents are playing the same thing repeatedly. The other type of convergence
is convergence in γ, which happens when γ > 5000 for all agents for the remainder of the game.
This means that all agents are making accurate predictions about what the other agents will do.
Convergence to a pattern of Nash equilibria will occur when the agents converge in γ but not in
strategies. Out of the 300 simulations when agents use PR to make their choice, they converge to
a pattern of Nash equilibria 15 times. Out of these 15 patterns 14 consist of players playing one
equilibrium in even rounds, and the other equilibrium in odd rounds. In the other pattern, agents
repeatedly play one of the equilibria twice and the other equilibrium once. So agents that use PR
are able to converge to patterns of Nash equilibria that have been observed by human subjects in
experiments.

My main focus was to develop a learning algorithm that could sustain these patterns of Nash
equilibria, which PR is able to do. While these alternations have appeared in the experimental
data, there are no experiments on the continuous version of the battle of the sexes game. Also the
experiments on the discrete version typically have other aspects such as communication. Therefore,
it is difficult to compare the results of these simulations with the current literature to any level
beyond the presence of these patterns.

4.2 Experimental Hypotheses

Next, we run simulations using the algorithm on the minimum effort coordination game and develop
testable experimental hypotheses. The benefit of using computational agents is that simulations
are essentially costless, which allows us to run many trials for each parameter value.

Previous experiments on the minimum effort coordination game have focused on differences in
cost and group size. The experiments have typically compared two different parameter values: a
low and high cost or a small and large group (Goeree & Holt 2005). Experiments examining a
large set of parameters are difficult due to constraints on the number of subjects in a given subject
pool, as well as monetary costs for running large experiments. Simulations using the algorithm
provide a testbed to simulate these experiments for many different parameter values. Unlike the
binary comparisons, examining a larger set of parameters will give us a better understanding of the
behavior which may have been overlooked in the past.

From the minimum effort coordination game defined above in equation ??, we run simulations
with α = 1, δ = 0, si ∈ [0, 1] for groups of four agents with 9 different costs, varying from c = 0.1
to c = 0.9. At each parameter value, we run 300 simulations lasting for 50 rounds.

Convergence Point: We find that higher costs lead to lower convergence points. Convergence
points are the average play over the last 10 periods of the repeated game. The convergence points
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Figure 6: Convergence Points and Convergence Round as a Function of Cost

of these simulations are displayed in Figure 6(a). This is consistent with experimental results from
minimum effort coordination games as shown in Goeree & Holt (2005).

Convergence Speed: We then examine the effect of different costs on speed of convergence.4

Based on the simulations, we find that the number of rounds required to converge decreases with
c, so convergence is faster when the cost is higher. A plot of convergence as a function of c is
displayed in Figure 6(b) (higher bars mean slower convergence). The intuition for increase in speed
of convergence for higher cost is simple; it is more expensive for agents to search for different
outcomes or experiment with different strategies.

Average Payoff: These convergence results have some interesting effects on the agents’ payoffs.
When agents do not all choose the same effort (i.e., best respond), the outcome is pareto inefficient.
If all agents chose the minimum effort for a given strategy profile, then everyone’s payoff would be
weakly higher, with at least one receiving a strictly higher payoff. Since it is inefficient when all
agents are not choosing the same effort, slow convergence may lead to lower average payoffs. The
average payoff per agent for different costs is displayed in Figure 7. It is difficult to compare the
welfare between two experiments with different costs because they have different payoff functions.
Even though welfare is difficult to compare, the payoff for any given strategy profile is lower when
the cost of effort is higher. Intuition thus suggests that higher cost of effort should lead to lower
average payoffs in the repeated game. However, the simulations suggest that higher cost may
actually lead to higher payoffs.

On one hand, with higher costs the agents receive lower payoffs for similar strategy profiles. In
addition, the agents are converging to lower effort, which also leads to lower payoffs. However, the
simulations show that high costs yield faster convergence, which eliminates some of the inefficiency
caused by non-coordination, and increases the agents payoffs. In fact, the increase in payoffs due
to faster convergence outweighs the decrease in payoffs due to higher cost and lower convergence

4We use convergence in γ as a measure of convergence.
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point. Note that the difference in average payoff shrinks as number of rounds increases in Figure
7. This result is due to the fact that the inefficiencies of non-convergence at the beginning of the
repeated interaction become less important as the number of rounds increases since it is more likely
that the agents have converged.

−.14

−.12

−.10

−.08

−.06

−.04

−.02

0

0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

P
ay

off

c

After 10 Periods

After 20 Periods

After 30 Periods

After 40 Periods

After 50 Periods

Figure 7: Average Payoffs for Different Costs in Minimum Effort Coordination Game as a Function
of Number of Rounds

Based on the simulations, we test the following three hypotheses in the experimental laboratory:
Hypothesis 1. Convergence Point: The game will converge to a pareto dominated payoff as

the cost of effort increases.
Hypothesis 2. Convergence Speed: The game will converge faster to an equilibrium as the

cost of effort increases.
Hypothesis 3. Average Payoff: The average payoff does not monotonically decrease as the

cost of effort increases.

5 Experiments

In this section we describe the setup and results for the experiments that will test the hypotheses
formulated from the simulations.
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5.1 Design

5.1.1 Overview

The experiments were conducted at the California Social Science Experimental Laboratory (CAS-
SEL) located in the University of California, Los Angeles (UCLA). A total of 60 subjects par-
ticipated in the experiments. The average performance-based payment was 20USD. All students
were registered as subjects with CASSEL (signed a general consent form) and the experiment was
approved by the local research ethics committee at both universities. These labs consist of over 30
working computers divided into a cubicles, which prevents students from viewing another student’s
screen.

The experiment was programmed and conducted with the experiment software z-Tree (Fischbacher
2007). The instructions were available both in print as well as on screen for the participants, and
the experimenter explained the instruction in detail out-loud. Participants were also given a brief
quiz after instruction to insure proper understanding of the game and the software. A copy of the
instruction, as well as the payoff tables, are available in the Appendix.

The subjects were randomly assigned to their roles in the experiment. Furthermore, no one
participated in more than one experiment. The identity of the participants as well as their individual
decisions were kept as private information. However, each groups knew their own minimum effort.
Experiment used fictitious currency called francs. The participants were fully aware of the sequence,
payoff structure, and the length of the experiment. All participants filled out a survey immediately
after the experiment.

5.1.2 Details of the Experiment

A total of 20 subjects participated in each session. These 20 subjects were split into 5 groups of 4,
and each group used a different cost parameter. The entire session was divided into 5 blocks, and
each block was divided into 15 rounds. After each block, the subjects were randomly rematched
(with replacement) to another group of 4 and were randomly reassigned another payoff parameter
(with replacement). See Figure 8 for the time line.

Block 1 Block 2 Block 3 Block 4 Block 5

15 Rounds 15 Rounds 15 Rounds 15 Rounds 15 Rounds

Rematch Rematch Rematch Rematch

Figure 8: Timeline and Matching Structure for the Experiment

Subjects played a minimum effort coordination game per round. Their task was to choose an
effort level,

si ∈ {1, ..., 7}

and their payments were determined by the following payoff function

pi = 1000
(

min
j∈N
{sj}

)
− c(si) + 5950
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In each block, there were 5 groups each with a different payoff matrix based on

c ∈ {50, 500, 900, 950, 990}

The subjects were shown the payoff table displayed in Table 1, with the calculation already com-
pleted for the subjects. The group size, randomization, and the fact that everyone in the group
were using the same payoff table were common knowledge. However, the group’s own minimum
effort was private information to the group and was not available to the outside members.

Minimimum effort of all agents

i’s Effort 7 6 5 4 3 2 1

7 12950− 7c 11950− 7c 10950− 7c 9950− 7c 8950− 7c 7950− 7c 6950− 7c

6 − 11950− 6c 10950− 6c 9950− 6c 8950− 6c 7950− 6c 6950− 6c

5 − − 10950− 5c 9950− 5c 8950− 5c 7950− 5c 6950− 5c

4 − − − 9950− 4c 8950− 4c 7950− 4c 6950− 4c

3 − − − − 8950− 3c 7950− 3c 6950− 3c

2 − − − − − 7950− 2c 6950− 2c

1 − − − − − − 6950− c

Table 1: Sample Payoff Table that was used in the Experiment

Calculations were already filled in for the subjects

5.2 Results

Figure 9 illustrates sample results from one of the block of sessions. Figure 9 (a) is an example
where there is a high level of coordination (converging to an effort level of 7) and Figure 9 (b) is
an example where there is a low level of coordination (converging to an effort level of 1).

5.2.1 Convergence Points

First, we test the hypothesis that higher costs will lead to lower convergence points and provide
the results in Table 2, Table 3, and Figure 10. These results are taken from the average choice
of the last 5 rounds and it supports the hypothesis that the average choice drops as the cost
parameter increases. While the cost parameter between c ∈ {50, 500} provides a high level of
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Figure 9: Sample Results From One of The Block of Session for Illustration Purpose
The thin lines represent individual choices and the thick line represents the group’s minimum choice

average choice around 4.5 to 5, the average choice drops significantly lower to 1 to 1.2 for cost
parameter between c ∈ {900, 950, 990}. Although there is not a significant difference between the
means from c = 900 and c = 950, the differences are significant in the right direction for the rest
of the mean comparisons.
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c = 50 c = 500 c = 900 c = 950 c = 990

Choice 4.8485 4.5000 1.2864 1.2606 1.1242

SE 0.0932 0.0975 0.0363 0.0391 0.0244

Table 2: Average Choice for Different Cost Parameters

µ50 > µ500 µ500 > µ900 µ900 > µ950 µ950 > µ990

p-value 0.0126 0 0.1677 0.0023

t-value 2.2428 21.2006 −0.9642 2.8422

Table 3: Average Choice Comparison
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Figure 10: Average Convergence Points for Different Cost Parameters
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5.3 Convergence Speed

Comparing convergence speed is bit trickier than comparing convergence points. In the simulations,
the agents are computer programs, so it is easy to see why they are making certain choices. However,
with humans it is not as straight forward. Consider the following example in Figure 11. If one
were to use a rule that the convergence occurs when there are no deviations (i.e., everyone is best
responding), then there won’t be any convergence until round 13 in the example. When studying
experimental results with subjects from a laboratory, this may be too conservative of a criterion.
Noisy choice in human behavior is often expected in experiments. Whether these noises are rational
or not is another story. However, there are many different ways of modeling noisy choices, such
as the Quantal Response Equilibrium (McKelvey & Palfrey 1995), the Level-K Model, and the
Cognitive Hierarchy Model (Camerer, Ho & Chong 2004), among others.
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Figure 11: A Sample Result From a Block of Session
The thin lines represents individual choices and the tick line represents the group’s minimum choice

Here, we provide two means of measuring convergence. First, we use a more quantitative
measure of convergence called v-bounded condition. Then we introduce a more qualitative and
intuitive measure of convergence called the similarness condition.

Definition: The game has converged to a particular equilibrium at round t under v-bounded
condition if the variance of efforts chosen is always less than v for every round starting from t.
Specifically, vart+m(σ1, ..., σn) ≤ v, ∀m ≥ 0.

For example, if the strategy profile σ consists of [3, 3, 3, 4], this will require that a variance
parameter of v ≥ 0.25 will be needed to consider this strategy profile as converged under the
v-bounded condition. See Table 4 for other samples of strategy profile and its required variance
parameter for v-bounded condition.

Using the v-bounded condition criterion for the notion of convergence, Figure 12 illustrates
the average rounds it took for the game to converge.5Although convergence speed seems to be

5We drop the last round deviation because there may be end game effects.
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σ Minimum v

[3, 3, 3, 4] .25

[3, 3, 4, 4] .33

[2, 3, 3, 4] .66

[3, 3, 4, 4] .92

[3, 3, 3, 5] 1

Table 4: Samples of Strategy Profile and its Required v Parameter for v-bounded Condition

increasing as the cost parameter increases, differences are not statistically significant. Consider the
following example from Figure 11 to illustrate why the v-bounded condition may not be a good
criterion: the condition requires v ≥ 9 in order to allow this particular example to be considered
converged due to a large jump in choice of effort by one of the players in round 12. This does not
take into account that the deviation is by one person for only one period. However, intuitively, one
may think that this game has converged at round 4.
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Figure 12: Number of Rounds Needed for Convergence for v ≤ 0.5

Therefore, we use a more intuitive and qualitative measure of convergence. For a given round,
look at the number of different effort in the strategy profile. Then, the game has converged to a
particular equilibrium if a high proportion of people use the same strategy. We call this the simi-
larness condition. The added benefit of the similarness condition is that it does not unreasonably
penalize cases where one person may deviate significantly away from the best response for just
one period. By the same token, it also means that this measure treats the following two strategy
profiles as equally converged: [2, 2, 2, 3] and [1, 1, 1, 7].

Figure 13 shows the frequency of different strategies played for various cost of effort. If the game
is indeed converging faster under the similarness condition, we expect to see a higher frequency of
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blue and sky-blue, which indicates everyone playing the same strategy and three people playing
the same strategy, respectively. As the cost of effort increases, we observe an increase in frequency
of blue and sky-blue. This increase in frequency holds true for any given round. Furthermore,
the frequency of blue and sky-blue also increases as the experiment proceeds (number of round
increases). In other words, there are many different strategies being played in the initial round but
subjects learn to best respond.

This similarness condition as a convergence criterion provides support that the game converges
faster to a particular equilibrium as the cost of effort increases.

5.4 Average Payoff

Finally, we analyze the behavior of the average payoff as the cost increases. Refer to Figure 14
and Table 5 and 6 to see the average payoff and their mean comparisons up to 4 rounds for each
of the cost parameters from the experiment. We find a statistically significant decrease in average
payoff from µ50 = 9088 at c = 50 to µ950 = 4846 at c = 950 (p ≈ 0). However, as the simulation
has predicted, the average payoff at c = 990 of µ990 = 5136 is significantly higher than the average
payoff at c = 950 of µ950 = 4846 (p < 0.05). This suggests that early in the interaction the average
payoffs are not monotonically decreasing as the costs increases

Given that we observe a non-monotonicity in average profit as a function of cost of effort in
the first 4 rounds, we test the significance after the entire block of the experiment (15 rounds).
The result is displayed in Figure 15 and Table 7 and 8. Again, we observe a similar pattern to the
results from the first 4 rounds. The average payoff of µ990 = 5650 at c = 990 is significantly greater
than the average payoff of µ950 = 5560 at c = 950 (p < 0.1). Furthermore, the average payoff in
this setting is the lowest at c = 950, which is also lower than the average payoff of µ900 = 5652 at
c = 900 (p < 0.1).

While the p-values for the non-monotonicity hypothesis are weaker after 15 rounds than after
4 rounds, this is what the simulations predicted. The difference between the average payoff when
c = 990 and c = 950 diminishes as more rounds are played. This confirms the prediction made
by the simulation in Figure 7. As more rounds are played, the positive welfare from the lower
cost averages out the negative welfare from the wasted effort. For example, after 4 rounds, the
difference in average payoff is µ990−µ950 = 288.9583. But, after 15 rounds, the difference decreases
to µ990−µ950 = 90.1889. In other words, the non-monotonicity of average payoff is most salient at
the initial phase of the game.

6 Conclusion

We have developed a learning algorithm which can be implemented with computational agents.
We have also shown that simulations with these computational agents are able to generate data
which shares many features with experimental data for both the minimum effort coordination
game and the battle of the sexes game. In particular, agents using my algorithm are able to sustain
alternations between Nash equilibria in the battle of the sexes game: a result which previous
learning models have had a difficult time sustaining. We have used these agents to run simulations
for a wide class of parameters in both of these games, and developed testable hypotheses about
human behavior in these games. We have designed an experiment based on these simulations and
confirmed the testable hypotheses developed from the simulations.
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Figure 13: Frequency of Different Strategies Played for Various Costs
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Figure 14: Average Payoff After 4 Rounds

c = 50 c = 500 c = 900 c = 950 c = 990

µ 9088 6527 4968 4846 5136

SEµ 118.05 103.36 115.42 124.51 106.56

Table 5: Average Payoffs for Different Cost Parameters After 4 Rounds

µ50 > µ500 µ500 > µ900 µ900 > µ950 µ950 < µ990

p-value 0 0 0.2366 0.0393

t-value 16.3234 10.05 0.7178 1.7632

Table 6: Average Payoffs Comparison After 4 Rounds

c = 50 c = 500 c = 900 c = 950 c = 990

µ 9791 7489 5652 5560 5650

SEµ 76.23 53.75 38.61 43.66 35.02

Table 7: Average Payoffs for Different Cost Parameters After 15 Rounds

µ50 > µ500 µ500 > µ900 µ900 > µ950 µ950 < µ990

p-value 0 0 0.0557 0.0536

t-value 24.6797 27.75 1.5928 1.6114

Table 8: Average Payoffs Comparison After 15 Rounds
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Figure 15: Average Payoff After 15 Rounds

The validity of my algorithm has been tested with experimental evidence from two coordination
games. Ideally, possibly with modifications, this algorithm will provide results consistent with a
much wider class of games. The wider the class of games that this type of algorithm is consistent
with, the more reliable the results will be for simulations of new games. As these agents become
a more reliable predictor of human behavior, they can become very valuable asset to experimental
economists. In the beginning we can replace costly pilot experiments by running simulations of
experiments with these agents to determine optimal parameter values for experiments. As these
agents become more reliable, we may be able to use these agents to interact with human subjects
during experiments, providing larger subject pools. Eventually, entire experiments could be run
with these computational agents, and when a useful result is found, it can be confirmed experimen-
tally with human subjects.
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Appendix

A Simulation Parameters

A.1 FP Simulations

The initial choice in the fictitious play simulations is chosen from U [0, 1]. After this players best
respond to empirical distribution of the history of play. In the continuous minimum effort coordi-
nation game, the best response to any history of choices will be either 0, 1 or one of the previous
choices. To calculate this best response, the players cycle through all possibilities and keep the one
that gives the highest payoff.

A.2 AL Simulations

In the simulations from Arifovic & Ledyard’s (2005) algorithm, each agent keeps a collection of
choices. The size of the collection is J = 50. The collection is initialized by drawing J numbers
from U [0, 1]. At each round, the agent’s action is chosen randomly from the collection based on
a probability distribution weighted by the forgone utility6 of each action. The agents then update
their choice set by experimentation and replication of the good strategies. The experimentation
parameter is ρ = 0.03. After the choice set is updated, the probability distribution is updated for
the following round, and then the agent is ready to make his choice for the next round. A further
explanation of the AL algorithm is available in their paper.

A.3 PR Simulations

The PR simulations are described in detail in the body of the paper. All of the simulations used
the following parameters. Agents take J = 10 random samples when updating their quasi-best-
response and their highest and lowest known payoffs. The boundaries for the confidence parameter
are γ ∈ [10, 10000]. The parameter relating variance and confidence is set to ρ = 12. When
updating the confidence, the agents have α = 1/3 and α2 = 1/6. This means that the agents’
confidence increases when their prediction is within 1/6 of the actual outcome. When the agents
are recognizing patterns, they look for the j = 3 most similar plays from the past to make their
prediction. Finally, the agents won’t start a moving session unless their confidence parameter is at
least γMS = 50. Once the agents are in a moving session, they are allowed f̄ = 4 failures before
the become discouraged and stop the moving session.

6What the payoff would have been if the agent had chosen this instead of what they chose last round.
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B Experimental Instructions

Experiment Overview 
 

You are about to participate in an experiment in the economics of decision making. If you listen carefully 

and make good decisions, you could earn a considerable amount of money that will be paid to you in cash 

at the end of the experiment.  

 

Please do not talk or communicate with other participants. Feel free to ask questions by raising your hand 

or signaling to the experimenter. 

 

You will be working with a fictitious currency called Francs. The exchange rate will be specified in the 

instructions. You will be paid in cash at the end of the experiment. 

 

The experiment consists of a sequence of periods and blocks. There will be total of 5 blocks. For each 

block, there will be total of 15 periods. 

 

Specific Instructions for Each Period 
 

Exchange rate: ______ Francs = _____ USD. 

 

Your group will consist of you and 3 other individuals (total of 4 people in your group). Your job is to 

choose one of the following numbers: {1, 2, 3, 4, 5, 6, 7}. The number you choose will remain 

anonymous. Your individual payoff is determined by your choice and the choice of others in your group. 

The following is a sample payoff table for illustration purposes only. Your actual payoff table will be 

using different numbers from this table. The overall ideal will be the same, however. 

 

Table 1: Your payoff in francs 

 

 Lowest choice of number from your group (including you)          

Your choice of number 7 6 5 4 3 2 1 

7 25 21 17 13 9 5 1 

6 - 23 19 15 11 7 3 

5 - - 21 17 13 9 5 

4 - - - 19 15 11 7 

3 - - - - 17 13 9 

2 - - - - - 15 11 

1 - - - - - - 13 

 

Examples 

- You chose 5 and the lowest choice of number from your group is 5. Then you win 21 francs. 

- You chose 4 and the lowest choice of number from your group is 2. Then you win 11 francs. 

- You chose 3 and the lowest choice of number from your group is 2. Then you win 13 francs. 

 

Quiz 

You chose 2 and the lowest choice of number from all the participants is 1. Then you win _____ francs. 

 

 

 

 

Procedural Summary 
 

There are five papers folded in half on each of your desk. They are labeled “Table 1”, “Table 2”, Table 3”, 

“Table 4” and “Table 5”. Each of these papers will present a different payoff table. The payoff from your 

paper labeled “Table 1” will be identical to everyone else’s paper labeled “Table 1”, the payoff from your 

“Table 2” will be identical to everyone else’s “Table 2” and so on. Please do not open any of these papers 

until you are instructed to do so. 

 

The experiment consists of 5 blocks and each block will consist of 15 periods. You will be placed in a 

group with 3 others who are randomly chosen for each block. This means that at the beginning of each 

block, you will be randomly matched with 3 others individuals to be placed in a group size of 4. 

 

Your payoff from each period will be determined by one of the 5 folded papers. You will be using one 

payoff table for the entire block. Everyone in your group will be using the exact same payoff table as you. 

Your group members are randomly chosen (via random number generator) and your payoff tables for 

each block are also randomly chosen (via random number generator). Your payment will be sum of your 

entire earnings from all 5 blocks. 

 

Q: How do you know what period you are in? What Payoff table to use? Which block you are in? 

A: Refer to Figure 1. Number of periods is denoted in the upper left corner. The first line of the 

computer’s instruction tells you what table your payoff is determined from.  

 

Periods 1-15 is block one. Periods 16-30 is block two. Periods 31-45 is block three. Periods 46-60 is block 

four. Periods 61-75 is block five. 

 

Note: There will be no sign that tells you that you are starting a new block. So pay attention to the period 

numbers. 

 

Q: Is it possible to have the same table number from one block to another? 

A: Yes, this is because you are randomly assigned a payoff table for each block. 

 

Timeline and Summary 
 

Block 1 begins. You’re randomly matched with 3 other people and everyone in your group is randomly 

assigned a same payoff table to use for this block. You may open the payoff table at this time. The period 

will begin and all the participants will make their choices privately through the computer. Press “okay” 

after you have made your decision. After all the participants have inputted their choices, the lowest 

number chosen from your group as well as your payoff will be displayed. Press continue to move on to 

the next period. You and your group will do this for 15 periods and block 1 will come to an end. 

 

Block 2 begins. You’re randomly matched with 3 other people and everyone in your group is randomly 

assigned a same payoff table to use for this block. You may open the payoff table at this time. The period 

will begin and all the participants will make their choices privately through the computer. Press “okay” 

after you have made your decision. After all the participants have inputted their choices, the lowest 

number chosen from your group as well as your payoff will be displayed. Press continue to move on to 

the next period. You and your group will do this for 15 periods and block 2 will come to an end. 

 

This continues until all 5 blocks are played. Your payment will be the sum of your payoff from each 

period in all 5 blocks. 

Instructions - Page 1
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Experiment Overview 
 

You are about to participate in an experiment in the economics of decision making. If you listen carefully 

and make good decisions, you could earn a considerable amount of money that will be paid to you in cash 

at the end of the experiment.  

 

Please do not talk or communicate with other participants. Feel free to ask questions by raising your hand 

or signaling to the experimenter. 

 

You will be working with a fictitious currency called Francs. The exchange rate will be specified in the 

instructions. You will be paid in cash at the end of the experiment. 

 

The experiment consists of a sequence of periods and blocks. There will be total of 5 blocks. For each 

block, there will be total of 15 periods. 

 

Specific Instructions for Each Period 
 

Exchange rate: ______ Francs = _____ USD. 

 

Your group will consist of you and 3 other individuals (total of 4 people in your group). Your job is to 

choose one of the following numbers: {1, 2, 3, 4, 5, 6, 7}. The number you choose will remain 

anonymous. Your individual payoff is determined by your choice and the choice of others in your group. 

The following is a sample payoff table for illustration purposes only. Your actual payoff table will be 

using different numbers from this table. The overall ideal will be the same, however. 

 

Table 1: Your payoff in francs 

 

 Lowest choice of number from your group (including you)          

Your choice of number 7 6 5 4 3 2 1 

7 25 21 17 13 9 5 1 

6 - 23 19 15 11 7 3 

5 - - 21 17 13 9 5 

4 - - - 19 15 11 7 

3 - - - - 17 13 9 

2 - - - - - 15 11 

1 - - - - - - 13 

 

Examples 

- You chose 5 and the lowest choice of number from your group is 5. Then you win 21 francs. 

- You chose 4 and the lowest choice of number from your group is 2. Then you win 11 francs. 

- You chose 3 and the lowest choice of number from your group is 2. Then you win 13 francs. 

 

Quiz 

You chose 2 and the lowest choice of number from all the participants is 1. Then you win _____ francs. 

 

 

 

 

Procedural Summary 
 

There are five papers folded in half on each of your desk. They are labeled “Table 1”, “Table 2”, Table 3”, 

“Table 4” and “Table 5”. Each of these papers will present a different payoff table. The payoff from your 

paper labeled “Table 1” will be identical to everyone else’s paper labeled “Table 1”, the payoff from your 

“Table 2” will be identical to everyone else’s “Table 2” and so on. Please do not open any of these papers 

until you are instructed to do so. 

 

The experiment consists of 5 blocks and each block will consist of 15 periods. You will be placed in a 

group with 3 others who are randomly chosen for each block. This means that at the beginning of each 

block, you will be randomly matched with 3 others individuals to be placed in a group size of 4. 

 

Your payoff from each period will be determined by one of the 5 folded papers. You will be using one 

payoff table for the entire block. Everyone in your group will be using the exact same payoff table as you. 

Your group members are randomly chosen (via random number generator) and your payoff tables for 

each block are also randomly chosen (via random number generator). Your payment will be sum of your 

entire earnings from all 5 blocks. 

 

Q: How do you know what period you are in? What Payoff table to use? Which block you are in? 

A: Refer to Figure 1. Number of periods is denoted in the upper left corner. The first line of the 

computer’s instruction tells you what table your payoff is determined from.  

 

Periods 1-15 is block one. Periods 16-30 is block two. Periods 31-45 is block three. Periods 46-60 is block 

four. Periods 61-75 is block five. 

 

Note: There will be no sign that tells you that you are starting a new block. So pay attention to the period 

numbers. 

 

Q: Is it possible to have the same table number from one block to another? 

A: Yes, this is because you are randomly assigned a payoff table for each block. 

 

Timeline and Summary 
 

Block 1 begins. You’re randomly matched with 3 other people and everyone in your group is randomly 

assigned a same payoff table to use for this block. You may open the payoff table at this time. The period 

will begin and all the participants will make their choices privately through the computer. Press “okay” 

after you have made your decision. After all the participants have inputted their choices, the lowest 

number chosen from your group as well as your payoff will be displayed. Press continue to move on to 

the next period. You and your group will do this for 15 periods and block 1 will come to an end. 

 

Block 2 begins. You’re randomly matched with 3 other people and everyone in your group is randomly 

assigned a same payoff table to use for this block. You may open the payoff table at this time. The period 

will begin and all the participants will make their choices privately through the computer. Press “okay” 

after you have made your decision. After all the participants have inputted their choices, the lowest 

number chosen from your group as well as your payoff will be displayed. Press continue to move on to 

the next period. You and your group will do this for 15 periods and block 2 will come to an end. 

 

This continues until all 5 blocks are played. Your payment will be the sum of your payoff from each 

period in all 5 blocks. 
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Any questions?  

 

 
Figure 1: Sample Screenshot 
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