# DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES <br> CALIFORNIA INSTITUTE OF TECHNOLOGY 

PASADENA, CALIFORNIA 91125

AMBIGUITY AVERSION IN ASSET MARKET: EXPERIMENTAL STUDY OF HOME BIAS

Noah Myung


# Ambiguity Aversion in Asset Market: Experimental Study of Home Bias 

Noah Myung


#### Abstract

The equity market home bias occurs when the investors over-invest in their home country assets. The equity market home bias is a paradox because the investors are not hedging their risk optimally. Even with unrealistic levels of risk aversion, the equity market home bias cannot be explained using the standard mean-variance model. We propose ambiguity aversion to be the behavioral explanation. We design six experiments using real world assets and derivatives to show the relationship between ambiguity aversion and home bias. We tested for ambiguity aversion by showing that the investor's subjective probability is sub-additive. The result from the experiment provides support for the assertion that ambiguity aversion is related to the equity market home bias paradox.


JEL classification numbers: C91, G11, G15.

Key words: Equity Market Home Bias. Mean-Variance Model. Ambiguity Aversion. Experiments.

# Ambiguity Aversion in Asset Market: Experimental Study of Home Bias* 

Noah Myung ${ }^{\dagger}$

## 1 Introduction

Equity Home Bias is a phenomenon in which investors over-invest in home country assets compared to what the rational model predicts. Despite the fact that, in the past 4 years, foreign stocks have been outperforming domestic stocks on average, US investors still maintain a domestic-asset-heavy portfolio. Home bias is not limited to US investors but occurs worldwide (Figure 1). There has been strong empirical support for the existence of home bias paradox and many scholars have made various arguments trying to explain this puzzle. The inflation rate, exchange rate, information asymmetry, and information immobility are some of the popular choices but none of these have been generally accepted or empirically consistent. However, these explanations are all within a rational choice framework. Here, we propose a behavioral framework, ambiguity aversion, to help better understand the cause of equity market home bias. Simply put, we argue that ambiguity aversion inhibits people from investing in unfamiliar companies. Unlike previous studies, we use an experimental design with real world assets and test for ambiguity aversion instead of using fictitious assets or simply showing home bias without an explanation.

Equity market home bias ${ }^{1}$ presents an interesting problem because the investors are being "irrational" in the sense that they are not investing in a pareto-optimal manner: there exists another portfolio allocation such that the investor does not face any higher risk (variance) but receives higher expected return. If people are indeed being irrational with their portfolio selection, then this presents an arbitrage opportunity. In addition, the irrational behavior raises the question of why investors are not allocating risks efficiently. Our paper shows that 1) using real world assets there is home bias, and 2) the bias is

[^0]caused by ambiguity aversion by showing that the investor's subjective probability over foreign assets is sub-additive.

A common argument against ambiguity aversion is that an investor might want to invest in familiar companies because he knows how well the company will perform (i.e., informational advantage). Surely, rational choice theorists cannot use that as an argument with the Efficient Market Hypothesis looming over it (Fama 1970). However, as an outsider of the firm, it is highly unlikely that the investor has any useful knowledge. The term "familiarity" that the investor generally refers to is related to being able to answer nontechnical questions such as "What does the firm produce? Where are they located?" However, these things should be irrelevant when it comes to investing. As with the standard finance approach, what the investor truly needs to know is the expected cash flow and not what the company produces. ${ }^{2}$

The insights obtained through the study of home bias also help in explaining other similar behavioral phenomena. For example, an employee often times invests in the same company in which he works. However, this is not an optimal way to hedge one's risk. When Enron collapsed, the employees who also invested in Enron took a double loss by failing to insure themselves against risk. In a non-investment environment, our model can help explain some of the everyday consumer purchasing behavior, such as buying a toothpaste. Consumers are willing to pay the extra premium in order to buy toothpaste from a brand which is more familiar. Although our study is focused on the international asset market, the same phenomenon is applicable across contexts.


Figure 1: Portfolio Weights: US, Japanese and UK Investors French and Poterba (1991)

[^1]
### 1.1 Literature Review

In addition to French and Poterba (1991), many others have documented empirical support of home bias. Ahearne, Griever, and Warnock (2003) show that in 1997 the US stocks composed only $48.3 \%$ of the worlds stock portfolio yet US investors portfolios were composed of only $10.1 \%$ foreign stocks. Therefore, when considering the Capital Asset Pricing Model (CAPM) with the parameters specified using the world market, US investors are holding less than $1 / 5$ th of the foreign assets required to achieve the efficient frontier. Even in experimental setting, Kilka and Weber (2002) have shown the existence of home bias in Germany and United States.

To justify the discrepancy between the empirics and the rational model, a number of explanations have been suggested. One explanation is that there is capital immobility due to institutional structure. However, international barriers have been decreasing for the last 30 years yet there is no significant change in the US investors' portfolio. Moreover, most of the portfolio diversification can be obtained by trading in American Depositary Receipts (Errunza, Hogan, and Hung 1999). Also, we observe that the gross equity flow has increased while the net flow stayed constant (Bekaert and Harvey 1995). Glassman and Riddick (2001) showed that informational asymmetry cannot be a good explanation unless we are assuming that the market portfolio standard deviation is 2 to 5 times higher than what is empirically shown. Explanation using exchange rate bias is not plausible with CAPM because one can hedge the exchange rate risk by shorting risk free assets in foreign countries. Even without hedging, optimal portfolio shows that investors should diversify even with exchange rate risk. Another explanation is that the investors are trying to hedge the risk of inflation rate. However, Cooper and Kaplanis (1994) suggest that this too is not a plausible explanation unless one assumes a very high level of risk tolerance. Lastly, in theory, information asymmetry and immobility can help explain home bias (Nieuwerburgh and Veldkamp Forthcoming 2008) but one needs to assume that there is relevant information gained by non-professional traders. For more detailed review, see Karolyi and Stulz (2003) and Lewis (1999).

The study reported here provides a behavioral explanation of the home bias paradox. From the behavioral economics point of view, ambiguity aversion is a very good starting point as an explanation for the home bias paradox. For example, Bossaerts, Ghirardato, Guanaschelli, and Zame (2005) showed that asset markets do react to ambiguity aversion with fictitious assets. Our research is an experimental study which shows a positive relationship between ambiguity aversion and home bias. In particular, the experiments tested whether investors are more ambiguous when it comes to foreign stocks and how this relates to the level of home bias. Our experiments are built on Ellsberg (1961)'s example of showing ambiguity aversion.

### 1.2 Agenda

We begin by introducing the theory behind the mean-variance model and its implications, followed by various theories of ambiguity aversion, and non-additive subjective probability model we used for the experimental design. We present experimental results directly after presenting the design for all six experiments. First two designs target decisionmaking over individual companies while the last two designs target decision-making over indices. We end with a summarizing conclusion.

## 2 Theory

A short review of ambiguity aversion and the mean-variance model is discussed in the following two subsections. Readers who are familiar with the topic may go directly to the experimental design section. However, our experimental design is heavily based on the non-additive probability discussed in the Theory of Ambiguity Aversion section.

### 2.1 Mean-Variance Model and Empirical Data

We follow the argument made by Lewis (1999). The standard model used in finance is the mean-variance model. The utility function is called the mean-variance utility when it increases with respect to mean and decreases with respect to variance. In particular, it has the following form: $U=U\left(E_{t} W_{t+1}, \operatorname{Var}\left(W_{t+1}\right)\right)$ where $W_{t}$ is the wealth at time $t, \operatorname{Var}(\bullet)$ is the variance-covariance matrix and $E_{t}$ is the expectations operator taken at time $t$. Furthermore, assume that $\frac{\partial U}{\partial W_{t}}>0$ and $\frac{\partial^{2} U}{\partial W_{t}^{2}}<0$. Denote $\alpha_{t}, \beta_{t}$ as the proportion of wealth held in domestic and foreign assets at time $t$, respectively. Hence $\alpha_{t}+\beta_{t}=1$. Define $r_{t}=\left(r_{t}^{D}, r_{t}^{F}\right)$ as turn on domestic assets and foreign assets at time $t$. For example, one may consider the following utility function with all the desired properties: $W_{t}\left(1+E_{t} r_{t+1}\right)-\gamma \operatorname{Var}\left(W_{t} E_{t} r_{t+1}\right)$ where $\gamma$ is the risk aversion parameter. Now, solving for the first order condition of the objective function, the optimal proportion of foreign holding is:

$$
\begin{equation*}
\beta_{t}=\frac{\left(E_{t} r_{t+1}^{F}-E_{t} r_{t+1}^{D}\right) / \gamma}{\operatorname{var}\left(r^{F}-r^{D}\right)}+\frac{\sigma_{D}^{2}-\sigma_{F D}^{2}}{\operatorname{var}\left(r^{F}-r^{D}\right)} \tag{1}
\end{equation*}
$$

where $\gamma=\frac{-2 W_{t} U_{2}}{U_{1}}$ is the relative risk aversion.
Consider the result from Equation 1. As the level of relative risk aversion increases, foreign investment decreases. However, there is a bound on how little one should invest in foreign companies. In particular, the bound is $\frac{\sigma_{D}^{2}-\sigma_{F D}^{2}}{\operatorname{var}\left(r^{F}-r^{D}\right)}$, which is empirically greater than zero. Table 1 shows how much one should hold in foreign assets for a given relative risk aversion.

Using the empirical data provided from Table 1 and optimal foreign holdings by Equation 1, even as relative risk aversion goes to infinity, one should still invest $39.5 \%$ of his shares in foreign assets. However, we observe approximately only $8 \%$ of the total investments are directed to foreign assets. Hence, using the mean-variance model, even with unrealistic amount of risk aversion, the level of home bias cannot be explained.

### 2.2 Theory of Ambiguity Aversion

Decision theorists have defined and modeled ambiguity in several ways. The most intuitive way of defining ambiguity is that the individual is uncertain about the distribution of the risk (Knight 1921). More uncertain the individual is about the distribution implies

| Summary Statistics of Returns |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | US | Canada | France | Germany | Italy | Japan | UK | EAFE |
| Mean | 11.14 | 9.59 | 11.63 | 11.32 | 5.81 | 14.03 | 12.62 | 12.12 |
| SD | 15.07 | 18.66 | 23.33 | 20.28 | 26.18 | 22.50 | 23.97 | 16.85 |
| Correlations |  |  |  |  |  |  |  |  |
| US | 1.00 | 0.70 | 0.44 | 0.36 | 0.22 | 0.26 | 0.51 | 0.48 |
| Canada | - | 1.00 | 0.43 | 0.31 | 0.29 | 0.27 | 0.52 | 0.49 |
| France | - | - | 1.00 | 0.60 | 0.42 | 0.39 | 0.54 | 0.65 |
| Germany | - | - | - | 1.00 | 0.37 | 0.37 | 0.43 | 0.62 |
| Italy | - | - | - | - | 1.00 | 0.38 | 0.35 | 0.51 |
| Japan | - | - | - | - | - | 1.00 | 0.36 | 0.86 |
| UK | - | - | - | - | - | - | 1.00 | 0.71 |
| EAFE | - | - | - | - | - | - | - | 1.00 |
| Foreign Portfolio Shares in Percent of Wealth |  |  |  |  |  |  |  |  |
|  | Actual | $\gamma=1$ | $\gamma=2$ | $\gamma=3$ | $\gamma=10$ | Minim | um Va | iance |
| $\beta$ | 8.00 | 75.9 | 57.7 | 51.6 | 43.1 |  | 39.5 |  |

Table 1: Summary Statistics of International Equity Market
Data are from Morgan Stanley, from Jan 1970 to Dec 1996
a higher level of ambiguity. For example, the probability distribution of a coin toss has very little ambiguity (close to $50 / 50$ ) but the probability distribution of the weather in Tajikistan (without looking it up on the internet) is pretty uncertain. To say that a person is ambiguity averse is to say that a person prefers to bet on an event where he knows more about the distribution. For example, I would rather bet on whether the next coin toss will turn up heads than bet on whether the weather in Tajikistan today is between 40-50 degrees.

Although seemingly intuitive, formal modeling of ambiguity has taken many different approaches. One model assumes that the utility from ambiguous events are less than the utility from unambiguous events (Sarin and Winkler 1992, Smith 1969). Another approach lets the weights of ambiguous probability be different from the weights on unambiguous probability when calculating the expected utility (Einhorn and Hogarth 1985, Segal 1987). Epstein (1999) states that there are multiple priors to the probability distribution. Another popular model often used, similar to the multiple priors approach, provides a range of probability for an event (i.e., probability of $X \in[0.3,0.7]$ ) instead of a point mass probability (i.e., probability of $X=0.5$ ) (Gilboa and Schmeidler 1989). The approach we use is from Schmeidler (1989) which is derived from Choquet (19531954), where we relax the assumption that the probability must add up to 1 . We call this approach the non-additive probability approach.

In non-additive probability approach, we keep the assumption that the probabilities are monotonic $(p(E) \leq p(F)$ if $E \subseteq F)$ but not necessarily additive $(p(E \cup F) \neq p(E)+$ $p(F)-p(E \cap F)$ ). In this model, we measure the level of ambiguity by the level of sub-
additivity. In other words, while $p(A)$ and $p(B)$ are the likelihood of the events $A$ and $B, 1-p(A)-p(B)$ measures the lack of "faith" in those likelihoods. Therefore, bigger sub-additivity $(1-p(A)-p(B))$ implies higher levels of ambiguity.

Again, an interested reader may refer to Camerer and Weber (1992) for more detailed discussion and Epstein (1999) for more rigorous treatment.

## 3 Materials and Methods

A total of 55 people participated in this experiment; 47 were graduate and undergraduate students from the California Institute of Technology (Caltech) and 8 were not Caltech affiliates. The participants were recruited using the Social Science Experimental Laboratory (SSEL) announcement system and public fliers. All participants were registered subjects with SSEL (signed a general consent form) and this experiment was approved as an exemption by the local research ethics committee. The experiment was conducted at the SSEL located at Caltech, Pasadena, CA. The lab consists of 30 working computers divided into a cubical setting. Subjects were physically prevented from viewing another student's computer screen. The subjects were paid a show-up fee of $\$ 10$ in addition to extra earnings based on their performance in the experiment.

The experimental designs dealing with individual companies (experiments 1-4) were programmed using $\mathrm{PHP}^{3}$ and $\mathrm{MySQL}^{4}$ and are divided into four parts plus a survey section. The experimental designs dealing with indices (experiments 5-6) were programmed using E-prime ${ }^{5}$ and are divided into two parts plus a survey section. Instructions were given prior to each section and were available both in print as well as on screen. We quizzed the subjects after the instruction to insure they understood the experiment. The instructions provided to the participants are attached as an Appendix.

[^2]
## 4 Control Experiment: Ellsberg Paradox

### 4.1 Experimental Summary and Motivation

We used the Ellsberg's standard two urns and two colored balls experiment as the control treatment (Ellsberg 1961). An ambiguous urn, urn 1, contains 100 balls with unknown distribution of red and black. A risky urn, urn 2, contains 100 balls of which 50 are red and 50 are black. There is risk with urn 2 while uncertainty with urn 1. This baseline treatment is conducted to obtain an approximation of which of the investors are ambiguity averse and not ambiguity averse. The experimental structure below depicts how we go about in eliciting preference for ambiguity.

### 4.2 Experimental Structure

Ellsbergs experiment was administered to the investors in the following manner:

1. Investor is presented with two urns.
(a) Urn 1 contains 100 balls but the number of black or red balls is unknown.
(b) Urn 2 contains 100 balls, of which 50 are black and 50 are red.
2. Setting one: Investor is asked to pick from the following two gambles.
(a) $\$ \mathrm{x}$ dollar if red ball is drawn from urn 1.
(b) $\$ \mathrm{x}$ dollar if red ball is drawn from urn 2 .
(c) Indifferent.
3. Setting two: Investor is asked to pick from the following two gambles.
(a) $\$ \mathrm{x}$ dollar if black ball is drawn from urn 1 .
(b) $\$ \mathrm{x}$ dollar if black ball is drawn from urn 2.
(c) Indifferent.

We determined whether the investor is ambiguity averse or not by the choices he makes in this Ellsberg experiment. In particular, if the investor chooses the gamble from urn 2 (risky urn) in both settings, then we inferred that the investor was ambiguity averse. By choosing urn 2 in the first setting, it implies that the expected utility from gamble two is greater than the expected utility from gamble one. If the investor chooses urn 2 in the second setting, it implies that the expected utility from the gamble two is greater than gamble one. The following proposition will show why this leads to sub-additive probability, and therefore, ambiguity aversion.

Proposition 4.1 Under the expected utility maximization framework, choosing the risky urn in both setting implies sub-additive probability measure.

Proof: Choosing gamble two in the first setting implies that

$$
\begin{align*}
p(\text { red ball } \mid \text { urn } 2) u(\$ x) & >p(\text { red ball } \mid \text { urn } 1) u(\$ x) \\
& \Longleftrightarrow \\
p(\text { red ball } \mid \text { urn } 2) & >p(\text { red ball } \mid \text { urn } 1) \tag{2}
\end{align*}
$$

Choosing gamble two in the second setting implies that

$$
\begin{align*}
p(\text { black ball } \mid \text { urn } 2) u(\$ x) & >p(\text { black ball } \mid \text { urn } 1) u(\$ x) \\
& \Longleftrightarrow \\
p(\text { black ball } \mid \text { urn } 2) & >p(\text { black ball } \mid \text { urn } 1) \tag{3}
\end{align*}
$$

Since urn 2 has 50 black and 50 red balls, it must be that $p($ black ball $\mid$ urn 2$)+p($ red ball $\mid$ urn 2$)=$ 1. From Equation 2 and 3 , this implies that $p($ black ball|urn 1$)+p($ red ball|urn 1$)<1$, which leads to a sub-additive probability measure.

### 4.3 Results

From the Ellsberg's urn experiment, we found $48.65 \%$ of the subjects to be ambiguity averse. We classified the subject as ambiguity averse if he chose option (b) in both settings one and two. If the subject chose a mixture of (a), (b) or (c), this classified him as undetermined, choosing option (a) in both settings classified him as ambiguity preferred, and choosing option (c) in both settings classified him as ambiguity neutral. Refer to Table 2 to see the complete breakdown. For the rest of the paper, when we refer to an ambiguity averse subjects, we are referring to the $48.65 \%$ of the subjects who were classified as ambiguity averse. We refer to the complement of the ambiguity averse population as the non-ambiguity averse subjects. ${ }^{6}$ One caveat is that, just as people show different risk preference (although correlated) for different tasks, the same holds true for ambiguity preference for different tasks.

| Type | Proportion (\%) |
| :--- | ---: |
| Ambiguity Averse | 48.65 |
| Ambiguity Neutral | 37.84 |
| Ambiguity Preferred | 2.70 |
| Undetermined | 10.81 |
| Number of Obs: 37 |  |

Table 2: Sample Population's Classification of Ambiguity Preference

[^3]
## 5 Experiment 1: Portfolio Building

Definition 1 A derivative is called a Digital Option if it provides a fixed return after reaching the strike price on the maturity date.

A digital option is often called an Arrow Security by economists. Consider the following example of a digital option. A digital call option with strike price $k$ and payment $r$ is denoted as $C(r, k)$ which pays zero if the stock price $s<k$ and $r$ if $s \geq k$ at the maturity date. A digital put option with strike price $k$ and payment $r$ is denoted as $P(r, k)$ which pays zero if the stock price $s>k$ and $r$ if $s \leq k$ at the maturity date.

### 5.1 Setup for Individual Stocks, Experimental Summary, and Motivation

A motivation for this experiment is to test whether there is home bias in our sample, as well as how the company choices are correlated with ambiguity aversion. We presented a collection of 23 domestic and 27 foreign companies to the investor in a random order. These companies were all from the technology and semiconductor industry to minimize the industry bias. In addition, these are companies listed as the 50 biggest companies in the world with respect to their industry by Forbes 2004 magazine. ${ }^{7}$ Along with a company name the investors were given their company's ticker symbol, headquarter location, as well as a brief list of company information which was provided by finance.google.com. Investors were asked to choose 15 companies to place a digital put option order and 15 companies in a digital call option order. One option was given per company chosen by the investor. These digital options had a maturity date of one week and strike price equal to the stock price at the day of the experiment. The investors were restricted from using any tools other than the software required for the experiment. In addition, the investors were not allowed to list a company for both a put and a call option. The investors were paid based on the performance of their portfolio after the maturity date of the options which paid $\$ 0.50$ per option exercised.

This study answers two major questions. 1. Do investors show signs of home bias? 2. What is the relationship between ambiguity aversion and home bias? We expect to see the proportion of domestic companies chosen to be greater than $23 / 50=46 \%$. In addition, we expect to see a positive correlation between the level of home biasness and ambiguity.

[^4]
### 5.2 Results

Refer to Figure 2 for the average portfolio composition. We tested the hypothesis of home bias. On average, US companies comprised $52.70 \%(\mathrm{SE}=3.05)$ of the call options and $49.21 \% ~(\mathrm{SE}=2.54)$ of the put options, which gave a total of $50.95 \% ~(\mathrm{SE}=1.30)$ investment in US companies. The investors were no more likely to choose call options for US companies nor were they more likely to choose a put option for US companies. Given that the US companies consisted of only $46 \%$ of the possible companies available to choose, this suggests that there is a home bias level of $4.95 \%$ where the differences are significant at $p<0.01$. This is a modest result but this may be caused by the fact that the experiment limits the industry choice and investors are required to choose 30 companies.

Despite the fact that half of our subjects were considered to be ambiguity averse from Ellsberg's experiment, we do not find a difference between the ambiguity averse and nonambugity averse individual when it came to levels of home bias in their portfolio. In fact, we did not find any correlation between the result from the Ellsberg treatment and total composition of one's portfolio.


Figure 2: Share of US Companies in Portfolio

## 6 Experiment 2: Bond or Options?

### 6.1 Experimental Summary and Motivation

In this experimental design, the investor was shown one company at a time and was asked to choose one of the three gambles. Gamble 1 is to receive a bond which pays $\$ 1$ one week later, Gamble 2 is to receive a digital call option with exercise value $\$ 1$ and Gamble 3 is to receive a digital put option with exercise value $\$ 1$. These options are identical to the previous section minus the exercise value. However, the investor also faced a known risk in a sense that, having chosen gamble 1 , he has $P$ probability of actually receiving the bond. Also, by choosing a gamble 2 or 3 , he has $1-P$ probability of actually receiving the options. In this setting, the probability of receiving the security of choice becomes an implied cost: lower the probability implies a higher cost. (Refer to the experimental instructions for a detailed example.)

Each investor gets three domestic companies with $P=33 \%$, three foreign companies with $P=33 \%$, three domestic companies with $P=29 \%$ and three foreign companies with $P=29 \%$. The companies were randomly selected for each investor. Investors were paid based on the performance of every trial. After completing the entire experiment (after part 4), the investors were asked for the level of familiarity of these 12 companies in the survey section.

Implied assumption is that the subjective probability belief over the stock prices is independent of the probability of receiving the security (bond and options). With this assumption, Proposition 2 claims that regardless of the belief over the performance of the stocks, choosing a bond will imply that the investor is exerting ambiguity aversion (via sub-additive probability).

Proposition 6.1 With any probability $p<33 \%$ in the above setting, selecting a bond will lead to a sub-additive probability measure. In addition, as $p$ decreases, the level of sub-additivity of the probability measure increases, which implies higher level of ambiguity aversion.

Proof: Denote $x$ as an event of receiving the bond and $y$ as an event of receiving the option. Denote $v$ as an event of increase in price and $w$ as an event of decrease in price of the company's stock. By assumption, $p(y \cap v)=p(y) p(v)$ and $p(y \cap w)=p(y) p(w)$. bond $\succ$ put $\Longleftrightarrow p(x) u(\$)>p(y \cap v) u(\$)=p(y) p(v) u(\$) \Rightarrow p(x)>p(y) p(v)$ hence $p(x) / p(y)>p(v)$. Similarly, bond $\succ$ call $\Longleftrightarrow p(x) / p(y)>p(w)$. We observe that $p(w)+p(v)<2 p(x) / p(y)$. If $p<33 \%$, then we have $p(w)+p(v)<66 / 67<1$, hence subadditive probability measure. Notice as $p$ decreases, $2 p(x) / p(y)$ also decreases. Therefore, the level of sub-addivity of the probability measure increases as $p$ decreases.

This section addresses four major questions: 1. Is there a difference in the level of familiarity between domestic and foreign companies? 2. What is the relationship between the level of familiarity and individual choices? 3. Are investors more likely to show higher
levels of ambiguity aversion in foreign companies compared to the domestic companies? And most importantly, 4. Are ambiguity averse investors more likely to choose bonds than others?

### 6.2 Results

This section provides the most significant result out of all designs related to individual companies.

The familiarity of companies were coded using the following method. Investors were asked during the survey section to state the level of familiarity from "never heard of it", "not familiar", "somewhat familiar", "familiar", and "very familiar." We then coded the dummy variable using 1 to 5 from "never heard of it" to "very familiar" in increasing order $(\mu=2.18, \sigma=1.30)$.

Table 3 presents a simple relationship from the experimental data. In particular, it addresses whether there is a relationship between familiarity and individual choices. We see that investors are indeed more familiar with US companies than foreign companies ( $\rho=0.24, p<0.01$ ). Next, we obtain a significant correlation between investment decision and ambiguity classification ( $\rho=-0.16, p<0.01$ ). This states that people who were classified as ambiguity averse are more likely to choose to receive a bond in this experimental treatment. Table 3 suggests that the type of option chosen (call vs put) is not influenced by ambiguity aversion, country origin of asset, level of ambiguity, or familiarity.

Refer to the graph in Figure 3. Here, we present the percentage that an option was chosen instead of a bond. On average, we find that an option was chosen in $73 \%$ of the trials. We further divide the group to compare the decisions made by ambiguity averse and non-ambiguity averse individuals, and then further divided the sample by focusing on domestic and foreign assets. First, we observe that investors classified as ambiguity averse are more likely to choose an option compared to non-ambiguity averse investors ( $\mu_{\text {non-ambiguity averse }}=0.81 \neq 0.67=\mu_{\text {ambiguity averse }}, p<0.01$ ). Furthermore, we observe that ambiguity averse individuals are more likely to receive a bond over option when faced with foreign companies ( $\mu_{\text {non-ambiguity averse }}=0.85 \neq 0.71=\mu_{\text {ambiguity averse }}, p<0.1$ ) or US companies $\left(\mu_{\text {non-ambiguity averse }}=0.77 \neq 0.62=\mu_{\text {ambiguity averse }}, p<0.1\right)$. Therefore, Figure 3 supports our theory and shows that ambiguity averse individuals are more likely to select a bond, in turn, showing a higher rate of sub-additivity in probability.

Next, we divide the sample to see the aggregate rate of option chosen for different levels of familiarity between ambiguity averse and non-ambiguity averse individuals in Figure 4. While we do not find significant difference between rate of option chosen between ambiguity averse and non-ambiguity averse investors for high levels of familiarity $(\geq 3)$, we find significant differences when the familiarity is low. This is expected since ambiguity aversion is more salient when the asset is not familiar. When familiarity level is

1 , we find that $\mu_{\text {non-ambiguity averse }}=0.87 \neq 0.65=\mu_{\text {ambiguity averse }}, p<0.01$, which means ambiguity averse investors are more likely to choose a bond conditioning on familiarity level being 1 . When familiarity level is 2 , we also find a statically significant differences: $\mu_{\text {non-ambiguity averse }}=0.81 \neq 0.58=\mu_{\text {ambiguity averse }}, p<0.1$. Again, these results support our theory: when people are unfamiliar with an asset, it creates higher rate of ambiguity, in turn, they are more likely to choose a bond. When people are familiar with an asset, the two class of investors behave in a similar manner. ${ }^{8}$

Table 4 represents three different random-effects logistical regression models. All three regressions takes the following functional form in Equation (4):

where $i$ is the index for the individuals and $j$ is the index for the companies. For example, familiarity ${ }_{i j}$ means individual $i$ 's familiarity for company $j$. For the random-effects model, we panel the data by individual $i$ : therefore, the number of groups equal the number of subjects and each panel contains all the choices made by that particular individual. The three different regression models are: All Assets, Familiar Assets, and Unfamiliar Assets. As the names indicate, we restrict our attention to a subset of observations for those analyses. Familiar Assets restricts attention to assets with familiarity levels 3 to 5 while Unfamiliar Assets are restricted to familiarity levels 1 and 2. The decision ${ }_{i j}$ variable took a value of 1 if the investor $i$ chose to receive an option for company $j$ and 0 if a bond. Ambiguity averse took a value of 1 if the individual $i$ was classified as ambiguity averse, 0 otherwise. US asset is a dummy variable representing whether the company $j$ is from US. High ambiguity is also a dummy variable, taking a value of 1 during $P=29$ treatment. Lastly, familiarity took a value ranging from 1 to 5 , least to most familiar.

From All Assets regression, we find that investors are more likely to choose to receive an option when familiarity is higher $\left(\beta_{4}=0.262, p<0.1\right)$. As expected, familiarity plays a even a stronger and positive role when an asset is familiar $\left(\beta_{4}=1.584, p<0.05\right.$ under Familiar Assets regression), and it is not significant when it comes to Unfamiliar Assets regression. In other words, familiarity matters when the investor is familiar with the asset and the relationship is positive. The high ambiguity independent variable is positive in all 3 regressions, which means that investors are more likely to select an option if the required level of sub-additivity increases. Notice that the US assets independent variable is significant under All Assets and Unfamiliar Assets regressions only ( $p<$ 0.05). Furthermore, the coefficients are negative: $\beta_{2}^{\text {allassets }}=-0.765>\beta_{2}^{\text {unfamiliarassets }}=$ -0.848 . This suggests that people are more ambiguity averse when it comes to unfamiliar US assets compared to unfamiliar foreign assets. This observation is also supported in Figure 3 by showing a higher rate of selecting the bond option for US compared to foreign assets. The key is that the $\beta_{2}$ is significant for the unfamiliar assets. Lastly, consider the independent variable titled ambiguity averse. This variable takes 1 if the investor is

[^5]classified as ambiguity averse and 0 otherwise. Under the All Assets regression, it has a weakly significantly and negative coefficient ( $\beta_{1}=-1.015, p<0.15$ two-tailed test), which correctly suggests that ambiguity averse individuals are more likely to take the bond over the asset. Furthermore, the ambiguity averse variable is not significant when it comes to Familiar Assets regression, since people are indeed not ambiguous when it comes to these assets. Lastly, when considering the Unfamiliar Assets regression, we obtain a even more negative and statistically significant coefficient, as one would expect if our theory were to hold true ( $\beta_{1}=-1.275, p<0.05$ ).

In summary, our data suggests that: 1 . subjects are more familiar with the US assets, 2. subjects are more likely to choose a bond when they are less familiar with the company, 3. subjects do not show higher rate of ambiguity aversion to foreign assets per se; they are ambiguity averse towards less familiar companies which are more likely to be foreign, 4. in fact, subjects are more likely to dislike unfamiliar US assets compared to unfamiliar foreign assets and 5 . subjects who are classified as ambiguity averse are more likely to choose a bond.

|  | Ambiguity Averse | $\begin{array}{r} \text { US } \\ \text { Asset } \end{array}$ | High <br> Ambiguity | Familiarity | Decision | $\begin{array}{r} \hline \hline \text { Option } \\ \text { Type } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ambiguity Averse | 1 |  |  |  |  |  |
| US Asset | 0 | 1 |  |  |  |  |
| High Ambiguity | 0 | 0 | 1 |  |  |  |
| Familiarity | -0.05 | $0.24^{* * *}$ | 0.02 | 1 |  |  |
| Decision | $-0.16^{* * *}$ | -0.10 | 0.31*** | 0.07 | 1 |  |
| Option Type | 0.11 | 0.06 | -0.00 | -0.03 |  | 1 |
| $*_{\mathrm{p}}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01 \text {. (Two-tailed test) }$ <br> Number of Obs: 252. Number of Obs for Optiontype: 185 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Table 3: Correlation Relationship
Ambiguity Averse: 1 if true, 0 otherwise. US Asset: 1 if true, 0 otherwise. High Ambiguity: 1 if $\mathrm{P}=29 \%, 0$ if $\mathrm{P}=33 \%$
Familiarity: from 1-5. Decision: 1 if Option, 0 if Bond. Option Type: 1 if Call, 0 if Put


Figure 3: Decision Comparison: By Ambiguity and Origin of Assets


Figure 4: Decision Comparison: By Ambiguity and Familiarity AA: Ambiguity Averse. NA: Not Ambiguity Averse. Fi: Familiarity level i

| Dependent Variable: Decision $=1$ if Option and 0 if Bond |  |  |  |
| :--- | :--- | :--- | :--- |
| Ind. Variables | All Assets | Familiar Assets | Unfamiliar Assets |
| Constant | 0.899 | $-4.343^{* *}$ | $1.762^{*}$ |
|  | $(0.631)$ | $(2.201)$ | $(0.942)$ |
| Ambiguity Averse | $-1.015^{\#}$ | -0.112 | $-1.275^{* *}$ |
|  | $(0.679)$ | $(0.876)$ | $(0.621)$ |
| US Asset | $-0.765^{* *}$ | -0.873 | $-0.848^{* *}$ |
|  | $(0.358)$ | $(0.747)$ | $(0.431)$ |
| High Ambiguity | $1.989^{* * *}$ | $1.930^{* *}$ | $1.544^{* * *}$ |
|  | $(0.392)$ | $(0.761)$ | $(0.462)$ |
| Familiarity | $0.262^{*}$ | $1.584^{* *}$ | -0.060 |
|  | $(0.158)$ | $(0.683)$ | $(0.518)$ |
| Log likelihood | -116.919 | -40.682 | -77.758 |

All Assets: Number of Obs: 252. Number of Groups: 21
Familiar Assets: Number of Obs: 91. Number of Groups: 21
Unfamiliar Assets: Number of Obs: 161. Number of Groups: 21
${ }^{\#} \mathrm{p}<0.15,{ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$. (Two-tailed test) Numbers in parentheses are standard errors

Table 4: Random-Effects Logit Regression: Decision
Variables are defined in the same manner as Table 3
Familiar Assets model restricts attention to assets with familiarity level greater than 2
Unfamiliar Assets model restricts attention to assets with familiarity level less than 3

## 7 Experiment 3: Company Preference

### 7.1 Experimental Summary and Motivation

In this part of the experiment, the investors are shown two companies ( A and B ) and asked to choose one of the three gambles: Gamble 1: A outperforms B, Gamble 2: B outperforms A and Gamble 3: A equals B. The term outperform means that the percent change in the company's stock price is higher than the other companys percent change one week from the day of the experiment. For the purpose of payment, we randomly selected one of the trials the investor went through and paid $\$ 5$ if he made the correct choice.

The key to this experiment is how the two companies are populated. Recall that from experiment 1, the investor specified his portfolio. Using this portfolio, the experiment is programmed to ask for comparison between US companies with put requests and foreign companies with call requests. In addition, the experiment also asked for a comparison between US companies with call requests and foreign companies with put requests. Given that the investor requested a put option for one company and a call option for another company, he should take the gamble which states the call company will outperform the put company. If the investor selects the US company which he requested a put option for over the foreign company which he requested a call option for, by the proposition below, the investor is showing ambiguity aversion against the foreign company.

Proposition 7.1 After choosing a put option for company $A$ and a call option for company $B$, stating that company $A$ will outperform company $B$ leads to a sub-additivity in probability measure.

Proof: Denote $v$ as an event of increase in price and $w$ as an event of decrease in price of the company's stock price. Having chosen a put option for company A implies that $p(w \mid A)>p(v \mid A)$. Having chosen a call option for company B implies that $p(v \mid B)>$ $p(w \mid B)$. Stating that company A will outperform company B implies that $p(v \mid A)>$ $p(v \mid B)$. Since $p$ is a probability measure, highest $p(v \mid A)$ can be is $1 / 2$. Therefore, $1 / 2>p(v \mid B)>p(w \mid B)$ hence $p(v \mid B)+p(w \mid B)<1$.

This design addresses the following major questions. 1. Do the investors consistently prefer the US companies over the foreign companies? 2. Are the investors who showed signs of ambiguity aversion during the Ellsberg setting (experiment 1) more likely to choose US (put) companies over foreign (call) companies?

### 7.2 Results

In short, we do not find any statistically significant results from this experimental study.
To support that there is sub-additive probability beliefs towards foreign companies, one would expect to see a higher rate of choosing US put over foreign call gambles
compared to choosing foreign put over US call gambles. In our data, when investors were making a decision between US put company and foreign call company, investors preferred the US put over foreign call $22.59 \%$ ( $\mathrm{SE}=4.58 \%$ ) of the time (Figure 5). In other words, the investors exhibited sub-additivity $22.59 \%$ of the time. However, when faced with US call and foreign put, investors preferred the foreign put $25.74 \%$ ( $\mathrm{SE}=3.45 \%$ ) of the time. The difference is not statistically significant.

As presented below, we further divided the observation by ambiguity category (Figure 5), portfolio composition (Figure 6), and conducted various regression analyses (Table 5). However, we did not find any significant result to support our theory.

The two possible explanation for the results we observed are: 1 . familiarity and 2 . risk hedging. The result we observe here may be due to higher familiarity of foreign companies shown over the US companies. The survey of familiarity of the companies chosen during the portfolio building section was not taken and cannot be tested.

Another possible explanation which we can infer from the data is that the investors were hedging their risk. Since the mean share of US companies in the investor's portfolio is $51 \%$, we can split the investors into two types: US-heavy investors who have over $51 \%$ of US companies in their portfolio and US-light investors who have less than $51 \%$. Then, from Figure 6 we observe that among the US-heavy investors, they are much more likely to prefer foreign put over US call $(p<0.1)$. However, this difference disappears when we only consider the US-light investors. Since the investors over-invested in US assets during the portfolio building section, they may have decided to under-invest in company comparison section since these are exactly the same companies they previously invested in. This type of experimental spill-over is a potential drawback of having the same subject participate in the various treatments.


Figure 5: Company Comparison Choices Made: By Ambiguity
AA: Ambiguity Averse. NA: Not Ambiguity Averse


Figure 6: Company Comparison Choices Made: By Portfolio
US-heavy: Portfolio consists of more than $51 \%$ US companies. US-light: Portfolio consists of less than $51 \%$ US companies

|  | Dependent Variables | Independent Variable: <br> Constant |  |  |
| :--- | :---: | ---: | ---: | ---: |
|  |  | Ambiguity Averse |  |  |

Table 5: Regressions: Company Comparison Choices Made
US-heavy: Portfolio consists of more than $51 \%$ US companies. US-light: Portfolio consists of less than $51 \%$ US companies

## 8 Experiment 4: Position Holding

Definition $2 A$ position is a vector $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n}$, where $n$ is the number of companies available and $\theta_{i}$ denotes the number of shares of company $i$.

Definition 3 Holding a short position means that the investor has done the following procedure. The investor borrowed the share from another investor and sold it today at today's price. Then the investor will buy back the share in the future and return the borrowed share to the original owner.

One should short a share if he believes that the stock price will drop in the future. The payoff from short position: price $_{\text {today }}-$ price $_{\text {future }}$.

Definition 4 Holding a long position means that the investor has done the following procedure. The investor borrowed cash to buy the stock today at today's price. Then the investor will sell the stock in the future and pay back the borrowed money.

One should long a share if he believes that the stock price will increase in the future. The payoff long position: price $_{\text {future }}$ - price today

Example: $\theta=(1,2,-4,2)$ with companies $Q=($ Microsoft, Dell, Shell, IBM). The holding from this position is $\theta Q^{T}$ which indicates that the investor holds a long position on 1 share of Microsoft, 2 shares of Dell, shorted 4 shares of Shell and holds a long position on 2 shares of IBM.

Definition 5 The preference relation $\succeq$ satisfies the sure-thing principle if for any subset $E \subset S,\left(x_{1}, \ldots, x_{S}\right),\left(x_{1}^{\prime}, \ldots, x_{S}^{\prime}\right),\left(\bar{x}_{1}, \ldots, \bar{x}_{S}\right)$ and $\left(\bar{x}_{1}^{\prime}, \ldots, \bar{x}_{S}^{\prime}\right)$ are such that 1. For all $s \notin E: x_{s}=x_{s}^{\prime}$ and $\bar{x}_{s}={\overline{x^{\prime}}}_{s}$ and 2. For all $s \in E: x_{s}=\bar{x}_{s}$ and $x_{s}^{\prime}=\bar{x}_{s}^{\prime}$ then $\left(\bar{x}_{1}, \ldots, \bar{x}_{S}\right) \succeq\left({\overline{x^{\prime}}}_{1}, \ldots, \bar{x}_{S}\right) \Longleftrightarrow\left(x_{1}, \ldots, x_{S}\right) \succeq\left(x_{1}^{\prime}, \ldots, x_{S}^{\prime}\right)$.

### 8.1 Experimental Summary and Motivation

This experiment provides a method for testing the behavior of the investor in the multiple companies setting. This can be seen as investing in funds (such as mutual funds). In this experiment, the investor was asked to choose between taking a position that is shown or taking a bond. We will first discuss the concept behind this experiment and then discuss the exact implementation in the experimental structure section. This experiment is structured in the following manner. The investor was given a list of domestic positions $\theta_{D} \neq(0, \ldots 0) \in \mathbb{R}^{n}$. We then went through several iterations and determined the investor's preference between the position and bond. Then we asked for the investor's preference between $\theta=\left(\theta_{D}, \theta_{F}\right)$ and a bond, where $\theta_{F} \in \mathbb{R}^{M}$ is a position in foreign companies. Again we went through several iterations in this setting. Lastly, we asked for the investor's preference between $\theta^{*}=\left(\theta_{D},-\theta_{F}\right)$ and a bond. For the purpose of payment, an investor was paid from a randomly selected trial and was paid based on the performance of the choice. If a position was selected, investor was paid based on the performance of the position. We capped the earnings at $\$ 10$ while the minimum was bounded at $\$ 0$ for the purpose of the experiment.

The data allows us to test whether the investor's preferences are consistent. In other words, if the investor preferred $\theta_{D}$ over the bond but preferred the bond over $\theta=\left(\theta_{D}, \theta_{F}\right)$, then he should prefer $\theta^{*}=\left(\theta_{D},-\theta_{F}\right)$ over the bond. Otherwise, he is violating the surething principle (Savage 1954). ${ }^{9}$ Same argument applies to the setting in which the investor prefers bond over $\theta_{D}, \theta=\left(\theta_{D}, \theta_{F}\right)$ over the bond and $\theta^{*}=\left(\theta_{D},-\theta_{F}\right)$ over the bond.

### 8.2 Experimental Structure

This is divided into two phases. This section is written to provide a detailed explanation of what actually occurred during the experiment and may be skipped. The overview was explained in the previous section.

## Phase 1: Single US and Single Foreign Company

1. Randomly select a US company listed under the call option from experiment 1.
(a) Ask for preference between the positive position of this company and a bond.
(b) Repeat this procedure until "position" choice is selected.

[^6]2. Randomly select a foreign company.
(a) Ask for preference between a positive position from the US company from 1-b and negative position from the foreign company.
(b) Repeat this procedure until the "bond" choice is selected.
3. Reverse the position for the foreign company from 2-b and ask for preference between the bond and the position.

## Phase 2: Two US and Two Foreign Companies

1. Randomly select 2 US companies (without replacement) and give one a positive and one a negative position.
(a) Compare the position with a bond.
(b) Repeat this 4 times.
2. Randomly select 2 foreign companies (without replacement), give one positive and one negative position, and pair this with one of the pairs from 1 (without replacement).
(a) Compare the position with a bond.
(b) Do this for all 4 pairs
3. Reverse the foreign company's position from 2.
(a) Compare the position with a bond.
(b) Do this for all 4 pairs

This section addresses the following two major questions: 1 . Do investors violate the sure-thing principle in the multiple companies setting? 2. If so, who are more likely to violate the sure-thing principle?

### 8.3 Results

In this section, each investors provided 5 data points. ${ }^{10}$ Each data point is a binary result of whether the investor violated the sure-thing principle. On average, investors violated the sure-thing principle 0.81 times $(\mathrm{SE}=0.164)$, hence violated the sure thing principle approximately 1 out of 5 times. These violations of sure-thing principle supports the argument that investors are ambiguity averse towards foreign assets.

Judging by the regression in Table 6, investors are more likely to violate the sure-thing principle in the position experiment if they are ambiguity averse ( $\beta=4.920, p<0.10$ ).

[^7]This result again supports the theory that ambiguity aversion does play a role in home bias. However, US-heavy investors are less likely to violate the sure-thing principle if they are also ambiguity averse $(\beta=-9.367, p<0.10)$, which is consistent with the results from the third experimental design (company comparison).


Table 6: Regression: Violation of Sure-Thing Principle
US Asset: \% of US companies in investor's portfolio

## 9 Experiment 5: Portfolio Building with Indices

### 9.1 Setup for Indices

Thus far we have focused on individual companies. We will shift our focus to indices for the next two experimental designs. Both setup and the experimental designs for the indices treatment are similar to the setup and the designs for the individual companies. There are several reasons why we need to consider both indices as well as individual companies. First, average investors tend to discuss and invest at a company level for daily trading. However, when the average investors are planning a retirement plan through financial advisors, they tend to invest in indices that are provided by the holding company. Secondly, people are more familiar with the companies than indices. In other words, there is less of a company-level effect or company-level informational advantage, since indices are composed of hundreds of different companies. Therefore, showing ambiguity aversion at the indices level may provide a stronger case of home bias. We are interested to learn whether the ambiguity aversion is concentrated only at the individual company level or if it is also present at the index level.

For the indices treatment, we have selected 25 domestic and 25 foreign major indices defined by Bloomberg ${ }^{11}$ which varied in capitalization size as well as industry focus. All the investors were initially provided with a web-based prospectus. The prospectus was created using data provided by Bloomberg which included summarization of the index, value of the index for the past three months and their trading volume. The sample instructions, screen shots, and the list of indices are provided in the appendix.

### 9.2 Experimental Summary and Motivation

A motivation for this design is to test whether there is home bias in investment behavior when dealing with indices. Investors were shown indices one by one and were asked to build their portfolio. A total of 25 domestic and 25 foreign indices were shown in a random order. For each of the indices, they were given 3 options: buy the index, sell the index, or receive a bond instead. The investors were paid based on the performance of their portfolio 7 days after the experiment was concluded. The payment structure was:

- If bond: $\$ 1.00$
- If buy: $\$ 1.00+(20 \times r)$
- If sell: $\$ 1.00-(20 \times r)$
where $r$ is the return from the index. Although we did not use the term, they were actually going long or short on the indices. The returns were multiplied by a factor of 20 to stimulate long term investment.

[^8]This study answers the following major questions: 1. Is there home bias when investing in indices? 2. Are investors more familiar with US indices? 3. Are people more likely to buy, sell, or receive a bond with US assets? 4. Do ambiguity averse investors have different portfolio composition? Overall, what is the relationship between familiarity, ambiguity aversion, and investment choices?

### 9.3 Results

First, just as with the individual company treatment, investors are indeed more familiar with the US indices than the foreign indices. When investors were asked to rate the familiarity of each index from 1-6, 1 being least and 6 being most familiar, the average familiarity for US indices was $2.057(S E=0.032)$ and for foreign indices was 1.268 ( $S E=0.018$ ), significantly different at $p<0.01$. In fact, the correlation of familiarity is stronger for indices $(\rho=0.364, p<0.01)$ than for individual companies $(\rho=0.24$, $p<0.01$ ).

Three random-effects regressions are presented in Table 7 for Bond, Sell and Buy as the functional form in Equation (5):

$$
\begin{equation*}
\text { choice }_{i j}=\alpha+\beta_{1} \text { us index }{ }_{j}+\beta_{2} \text { index familiarity }{ }_{i j}+\beta_{3}{\text { ambiguity } \text { averse }_{j}} \tag{5}
\end{equation*}
$$

where $i$ is the index for the individuals and $j$ is the index for the indices. Bond, Sell and Buy variables take 1 if the investor chose to receive the respective choice, 0 otherwise. US index is a dummy variable taking 1 for an US index. Index familiarity ranged from $1-6$ as stated above. The ambiguity averse variable takes 1 if the investor was classified as ambiguity averse via Ellsberg's experiment, 0 otherwise.

The Bond regression's significant coefficient is only for the index familiarity ( $\beta_{2}=$ $-0.029, p<0.1$ ), which states that investors are more likely to take the bond choice if they are less familiar with the index. This is consistent with findings from the individual company treatment. The Sell regression and the Buy regressions also have one variable that is statistically significant and it is for dummy variable US Index: $\beta_{1}=-0.193$, $p<0.01$ for Sell and $\beta_{1}=0.185, p<0.01$ for Buy. This suggests that investors are much more likely to buy a US asset while less likely to sell a US asset. This is consistent with a home biased investor.

Figure 7 and Figure 8 presents the composition of investor's portfolio. Overall, we find that investors are more likely to buy than to receive a bond or sell ( $p<0.01$ ) although the difference in bond and selling is not significantly different. The biggest contrast appears when comparing US indices to foreign indices. There is no significant differences when comparing the ratio of selling and bond for US indices but investors are much more likely to buy US indices: composed over $50 \%$ of the portfolio ( $p<0.01$ ). However, the investment ratio is more evenly spread out when it comes to foreign indices. There is no significant difference when comparing buying and selling behavior for the US indices. When we divide the observation to high familiarity (familiarity level $>2$ ) to low
familiarity (familiarity level $\leq 2$, investors are much more likely to choose to buy than to sell or receive a bond with in both categories ( $p<0.01$ ). Furthermore, investors have higher ratio of bond when it comes to low familiarity indices compared to familiar indices ( $p<0.01$ ). Lastly, with respect to ambiguity averse to non-ambiguity averse investors, we find that non-ambigity averse investors are much less likely to take the bond option ( $p<0.1$ ). However, there is no significant difference in the ratio of buying indices, but ambiguity averse investors have higher ratio of selling ( $p<0.05$ ).

We conclude that investors are: 1. indeed home biased (more buying and less selling in US indices), 2. more familiar with US indices, 3 . more likely to buy familiar indices, 4. ambiguity averse individuals are more likely to receive a bond, and 5 . more likely to receive a bond when faced with unfamiliar indices.

|  | Dependent Variable |  |  |
| :--- | :--- | :--- | :--- |
| Ind. Variables | Bond | Sell | Buy |
| Constant | $0.304^{* * *}$ | $0.394^{* * *}$ | $0.303^{* * *}$ |
|  | $(0.065)$ | $(0.042)$ | $(0.059)$ |
| US Index | 0.006 | $-0.193^{* * *}$ | $0.185^{* * *}$ |
|  | $(0.034)$ | $(0.036)$ | $(0.038)$ |
| Index Familiarity | $-0.029^{*}$ | 0.023 | 0.007 |
|  | $(0.015)$ | $(0.016)$ | $(0.017)$ |
| Ambiguity Averse | 0.062 | -0.084 | 0.022 |
|  | $(0.093)$ | $(0.053)$ | $(0.081)$ |
| Overall R ${ }^{2}$ | 0.0095 | 0.0435 | 0.0389 |
| Number of Obs: 792. Number of Groups: 16. |  |  |  |
| ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$. (Two-tailed test) |  |  |  |
| Numbers in parentheses are standard errors. |  |  |  |

Table 7: Random-Effects Regression: Portfolio Composition with Indices
IV: US: 1 if true, 0 otherwise. Index Familiarity: from 1-6 least to greatest. Ambiguity Averse: 1 if true, 0 otherwise DV: Bond: chose Bond. Sell: chose Sell. Buy: chose Buy


Figure 7: Composition of Portfolio for Indices
Average $\mathrm{SE}=0.0178$. Maximum $\mathrm{SE}=0.0266$


Figure 8: Composition of Portfolio for Indices
Average $\mathrm{SE}=0.0178$. Maximum $\mathrm{SE}=0.0266$

## 10 Experiment 6: Bond or Options with Indices

### 10.1 Experimental Summary and Motivation

The design for this experiment is similar to the Bond or Options experiment under the individual companies treatment. The investors were shown series of indices one at a time and were given three possible choices just as in the stock treatment:

- Receive a bond which pays $\$ 1.00$ with probability $P$.
- Receive a digital call option with exercise value of $\$ 1.00$ with probability $1-P$.
- Receive a digital put option with exercise value of $\$ 1.00$ with probability $1-P$.

However, there are two differences. First, we used indices instead of companies: 25 domestic and 25 foreign, which were presented in random order. Second, we varied the value of $P$, the known risk of receiving the actual derivative. Instead of focusing only on $P=33 \%$ or $P=29 \%$ as in the individual companies treatment, we varied the $P \in\{30,32,34,36\}$ for the indices treatment. Note that we are in a super-additive subjective probability measure once $P \geq 34 \%$.

This study answers the following major questions. What is the relationship between familiarity, ambiguity aversion, and investment choice?

### 10.2 Results

Table 8 presents several random-effects logistical regression models. We regress subadditive cases, super-additive cases, and all cases with the following two functional forms:

$$
\begin{equation*}
\text { decision }_{i j}=\alpha+\beta_{1} \text { us index }_{j}+\beta_{2} \text { familiarity }_{i j}+\beta_{3} \text { P-level } \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { decision }_{i j}=\alpha+\beta_{2} \text { familiarity }_{i j} \tag{7}
\end{equation*}
$$

Table 8 details the dependent variables. Consistent with our findings thus far, we find that people are more likely to take the option with more familiar indices (see model (1), (2), (4), and (5)). The significance disappears once we focus only on the super-additive cases and this is expected (see model (3) and (6) in Table 8). Furthermore, model (1) shows that people are also more likely to take the option with a US index compared to foreign index.

Unlike the case with the individual companies, we do not get a strong result when analyzing the data by ambiguity and origin of indices (see Figure 9). The difference in rate of choosing an option is not statistically different when we divide our observation by US
indices only and foreign indices only. Furthermore, even in the aggregate level, the difference is only marginally significant ( $\mu_{\text {non-ambiguity averse }}=0.89 \neq 0.84=\mu_{\text {ambiguity averse }}$, $p<0.15$, two-tailed t-test).

Figure 10 compares the decisions divided by ambiguity classification of the investors and their familiarity level for the indices. Consistent with the results from the individual companies, we do find that investors are more likely to take the bond (in turn, showing sub-addivity in subjective probability), when it comes to unfamiliar assets compared to non-ambiguity averse investors. This difference, again disappears appropriately when we focus the observation to familiar indices.

In summary, although not as strong as the individual company treatment, we find that subjects show ambiguity aversion when it comes to investing in unfamiliar indices.


Figure 9: Decision Comparison: By Ambiguity and Origin of Indices


[^9]DV: Restrict sample to their respective variables


Figure 10: Decision Comparison: By Ambiguity and Familiarity for Indices AA: Ambiguity Averse. NA: Not Ambiguity Averse

Familiar if familiarity level $>2$. Otherwise, Unfamiliar. Sub-addivity cases only: $P \in\{30,32\}$

## 11 Conclusion

We started out this research to show that ambiguity aversion is a possible candidate for explaining home bias paradox despite what the rational choice model suggests. We designed experiments that used real world assets and prices. We then used the concept of sub-addivity to show whether an investor's choices expressed ambiguity aversion. Our experimental data supports the theory that ambiguity aversion partly explains home bias phenomena.

Overall, experiment 5 (Portfolio Building with Indices) provided the strongest support for home bias in our lab environment and experiment 2 (Bond or Options with individual companies) provided the strongest support that ambiguity aversion helps to explain some part of home bias behavior.

In quick summary, we classified about $50 \%$ of the participants as ambiguity averse by using the Ellsberg's urn experiment. Portfolio building with individual companies showed a modest size in home bias. Bond or Options with individual companies experiment showed that investors do show higher rate of ambiguity aversion (sub-additivity in probability) when it comes to unfamiliar assets, and the investors are more familiar with US assets. The company preference experiment failed to show significant results which we contribute to spill-over effect from the portfolio building experiment. The position holding experiment demonstrated that investors do violate the sure-thing principle approximately $20 \%$ of the time, and ambiguity averse investors are even more likely to violate the principle. Portfolio building with indices provided evidence that there is home bias in our laboratory setting; investors prefer to buy familiar indices and are more famil-
iar with US indices. Lastly, Bond or Options with Indices experiment also showed that, even with indices, investors exhibit higher rate of ambiguity aversion when investing with unfamiliar indices.

Overall, the results provided here show positive support that ambiguity aversion as a partial explanation of home bias phenomenon. As Camerer and Karjalainen (1994) stated, methodologically, "this kind of work is difficult" and that even these modest size (sub-addivity of less than 5\%) in ambiguity aversion "could have important economic consequences" (pp. 348-349). Therefore, we are quite content with our modest result provided through our experiment, and hopeful for future research.

## 12 Appendix

### 12.1 Instructions for Individual Companies

The following 4 pages are sample instructions used in the experiment.


|  |  |  |
| :---: | :---: | :---: |

Options: Put option will give you $\$ 0.50$ if the stock price of the company one week from today is lower
than the stock price today. Call option will give you $\$ 0.50$ if the stock price of the company one week from than the stock price today. Call option will give you $\$ 0.50$ if the stock price of the company one week from
today is higher than the stock price today. You will be paid $\$ 0.50$ regardless of the type of option you hold
if the stock price one week from today is the same as today's price. Otherwise, you will receive nothing. Payoff: You will be paid based on how your entire portfolio performs one week from today.
The term "today's stock price" is the last trading price of the company stock collected from
finance.yahoo.com and www.tse.or.jp. This price was recorded at noon today (PST). "Price one week from finance.yahoo.com and www.tse.or.jp. This price was recorded at noon today (PST). "Price one week from
today" is the last trading price of the company stock collected from finance. yahoo.com and www.tse.or.jp 7
 10-20 minute delay.
Instruction provided to the students.
These instructions were handed out one section at a time
Experiment Overview
You are about to participate in an experiment in the economics of decision making. If you listen carefully
and make good decisions, you could earn a considerable amount of money that will be paid to you in cash
or check at the end of the experiment ( 7 days from today).
You will not be paired with any other individual. In addition, no other person's decision will influence your
outcome. All your choices will be recorded today and your outcome will be realized one week from today.
The rules for the experiment are as follows. Do not talk or communicate with other participants. If you are
using a computer, do not use any software other than that is explicitly required by the experiment. You are
not allowed to browse the internet or check emails ett. If you are violate ethese rules, youll be asked to
leave without pay. Feel free to ask questions by raising your hand or signaling to the experimenter.
Payment: You will receive a show-up fee of $\$ 10$ today. At the end of today's session, you can arrange to
either pick up the additional earnings in cash in person at Baxter Hall, Room 6 or have a check mailed to
you.
The Process will now be explained in detail.
The Process
This experiment is divided into four parts plus a survey section.
Part $\mathbf{1 .}$. Portfolio Building
In this part of the experiment, you will be shown a list of companies and be asked to build a portfolio. All
the companies are from the technology or semiconductor industry and are considered to be one of the top
50 biggest companies in the world with respect to their industry by Forbes. Included in the company list are
the company name, company ticker symbol, location of the headquarters and a brief information about the
company provided by finance.googge.com. In this particular portfolio, you'll be asked to choose 15
companies in which you wish to receive call options and 15 companies in which you wish to receive put
options. Details about these options will be explained below. You will receive one call option per company
you list under the call option box. You will receive one put option per company you list under the put
option box. You cannot use the same company twice (meaning, if you requested a call option on Microsoft,
you cannot request a put option on it as well). When inserting the companies, please insert the company
symbol separated by comma. Do not place a comma after the last symbol. See screen show below for an
example.

Example: Suppose you are participating on the experiment on Oct 1st. You chose a put option for Google.
The last trading price posted on finance.yahoo.com at noon for Google is $\$ 400$. Seven days from now, Oct 8th, 12:00PM, the last trading price posted on finance.yahoo.com for Google is $\$ 401$ which is greater than
$\$ 400$. Since you chose a put option, you will not be paid. However, if the last trading price posted on $\$ 400$. Since you chose a put option, you will not be paid. However, if the last trading price posted on
finance.yahoo.com for Google is $\$ 400$ or below, then you will be able to exercise your option and receive
$\$ 0.50$.

Any questions?
Part 2. Bond or Options?
In this part of the experiment, you will be shown one company name at a time and be asked whether you wish to take the bond (which pays $\$ 1$ ), put option or a call option. These options are identical to the options
in part 1 and will pay $\$ \mathbf{1}$ if exercised. A bond is a risk free asset which will pay you $\$ 1$ independent of the stock price. In this section, you are also given a button "click here to view company info". Press this button
and you will be given the company info for these specific companies. See the screen show below for an example.


## Payoff: You will be paid based on the outcome of every trial in this section.

However, in this section, you are not guaranteed to receive a bond or an option. You will be given the probability of receiving the choice you select. In the above example, if you choose to receive a bond, you
have $33 \%$ chance of actually receiving it. If you do receive it, you'll be paid $\$ 1$ regardless of what happens have $33 \%$ chance of actually receiving it. If you do receive it, you'll be paid $\$ 1$ regardless of what happens
to the company's stock price. Otherwise, you will receive $\$ 0$. If you choose to receive a call option, then you have a $67 \%$ chance of receiving it and $33 \%$ chance of receiving nothing. Note that when you do actually receive a put option, you are not guaranteed to be paid $\$ 1$ unless the stock price one week from
today is less than today's price. See the table below to get a better understanding of the payoff.

$$
\begin{array}{|l|l|l|}
\hline \begin{array}{l}
\text { If you select a } \\
\text { Bond }
\end{array} & \begin{array}{l}
\text { Today's stock price is less than next week's } \\
\text { stock price }
\end{array} & \begin{array}{l}
\text { Today's stock price is greater than next } \\
\text { week's stock price }
\end{array} \\
\hline 33 \% \text { chance } & \$ 1 & \$ 1 \\
\hline 67 \% \text { chance } & \$ 0 & \$ 0 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|}
\hline \begin{array}{l}
\text { If you select a Call } \\
\text { option }
\end{array} & \begin{array}{l}
\text { Today's stock price is less than next } \\
\text { week's stock price }
\end{array} & \begin{array}{l}
\text { Today's stock price is greater than next } \\
\text { week's stock price }
\end{array} \\
\hline 33 \% \text { chance } & \$ 0 & \$ 0 \\
\hline 67 \% \text { chance } & \$ 0 & \$ 1 \\
\hline
\end{array}
$$



The term "outperform" is defined as follows: company A out performs company B if and only if the increase in percentage of the dollar value of company A's stock price is higher than the percentage increase
of the dollar value of company B's stock price. The time in which the stock prices are taken will be the
same as in part l


How to Calculate your payoffs by holding your position:

$$
\begin{aligned}
& \text { To calculate your profit with negative share: Today's price - Next week's price = profit. } \\
& \text { Payoff: Using a random number generator, we will select one of the trials. In one week, you will be paid } \\
& \text { based on the performance of the selected position. The Bond will pay } \$ x \text { dollars in one week, regardless of } \\
& \text { the outcome of the position. } \$ \text { d differs between trial and wwill be specified accordingly during the trials. } \\
& \text { Since this is an experiment you will not have to pay anything back if you end up owing money by holding } \\
& \text { your position. Therefore, the worse you can do with a position holding is zero which is still strictly less } \\
& \text { than what you will receive with by holding the bond. In addition, the maximum that a position can pay off } \\
& \text { will be limited at } \$ 10 \text {. }
\end{aligned}
$$ The time in which the stock prices are taken will be the same as in part 1 .

Example of what a positive share means:

$$
\text { Your profit }=\$ 40-\$ 50=-\$ 10
$$

$$
\begin{array}{|l|l|}
\hline \text { Today: Price of Toyota share is } \$ 50 . & \text { Next week: Price of Toyota share is } \$ 40 \\
\hline \text { Your profit }=\$ 40-\$ 50=-\$ 10 & \\
\hline
\end{array}
$$

Example of what a negative share means:

| Today: Price of Toyota share is $\$ 50$. |
| :--- |
| Your profit $=\$ 50-\$ 40=\$ 10$ |

Example 1: $\mathrm{A}=$ Intel and $\mathrm{B}=\mathrm{IBM}$.

|  |
| :--- |$|$| Today's price | Next week's price | Percentage change |
| :--- | :--- | :--- |
| A | $\$ 100$ | $\$ 101$ |
| B | $\$ 50$ | $\$ 51$ |

## Part 4. Position Holdings.

In this part of the experiment, you will be shown a list of companies and a position held. You will be asked
if you prefer to keep the current position or a bond. See screen shot for an example. A position is a portfolio if you prefer to keep the current position or a bond. See screen shot for an example. A position is a portfolio
constructed with both positive and negative shares of the company stock. When you have a positive share, it means that you have borrowed money today to buy the stock (at today's price) and will sell it in the future to pay back the loan. Negative share means you have borrowed the stock to sell it today (at today's price)
and will buy it back in the future (at the future price) to return the stock to the owner. See example below to see how these will actually work. A bond is a risk free asset, meaning, it will pay $\$ \mathrm{x}$ in one week regardless
of the outcome of the position. In this setting, you will only work with one share per company. In summary, you want to have a negative share if you believe that the price will drop and a positive share if you believe,
that the price will increase. If you believe that the total return from your position is going to be less than $\$ x$, that the price will increase. If you
when you should choose the bond.
Again, you are also given a button "click here to view company info". Press this button and you will be
given the company info for these specific companies.
5

$7$

### 12.2 Screenshot for Individual Companies

The following page is a sample screenshot from the experiment.
Sample Screen Shot


### 12.3 Instructions for Indices

The following 5 pages are sample instructions and screenshots used in the experiment.
Part 1. Portfolio Building
In this part of the experiment, you will construct your portfolio over a series of rounds. In each round, you will be presented with a stock index. These indices are the indices you
had a chance to look over during the prospectus section. Your decisions will be whether you want to buy a share of the index, sell a share of the index or buy a bond. (See
-
Figure 1: Portfolio building example screen
Each index will cost 100 francs. To calculate your payoff from your investments on the indices, we will pay you the original investment plus your percent return multiplied by 20 This is done to increase the range of possible returns and to simulate longer-term
investments.
To summarize, the payoffs for the three possible choices are:
$\begin{array}{ll}\text { Buy: } 100(1+20 * \mathrm{r}) & \text { You buy if you want to bet that the index value will increase. } \\ \text { Sell: } 100\left(1-20^{*} \mathrm{r}\right) & \text { You sell if you want to bet that the index value will decrease. }\end{array}$

For example, suppose you invested in XYZ Index at 50 . One week later, XYZ is at 52 .
We will calculate the $\%$ return as $(52-50) / 50=0.04$. Your initial investment of 1 share of XYZ will then be worth $1+(20 * 0.04)=1.8$ times as much, or 180 francs.

If you buy the bond, you will be paid a fixed sum of 100 francs.

## One More Example

To make sure you understand the payoffs, we will now go through an example showing
all the possible outcomes.
Suppose that there are three rounds. You are asked to invest in Indices ABC, OPQ, and
XYZ. You choose to buy ABC, sell OPQ, and took the bond on XYZ. Suppose one week from now, ABC gained 5\%, OPQ gains $3 \%$, and XYZ loses $10 \%$.

Your return would then be $1+(20 \times 0.05)=2$ for ABC (you bought ABC and it gained),
$1+(20 \times-0.03)=0.4$ for OPQ (you bought OPQ and it lost), and 1 for XYZ (you took the bond).

Finally, because everything costs 100 francs, you will make $100(2+0.4+1)=340$ francs.
Table 1 summarizes the above.

\section*{|  | $A B C$ | $O P Q$ | $X Y Z$ |
| :--- | :--- | :--- | :--- |
| Your choice | Buy | Sell | Bond |
| Initial investment | 100 f | 100 f | 100 f |
| Outcome | $+5 \%$ | $+3 \%$ | $-10 \%$ |
| Your return $(20 \mathrm{x})$ | $100 \%$ | $-60 \%$ | $0 \%$ |
| Your payoff | 200 f | 40 f | 100 f |}

Table 1: Sample payoff table
'о!
The term "today's value" is the last trading price of the index collected from
finance.yahoo.com and Bloomberg. This price was recorded at noon today (PST). "Value one week from today" is the last trading price of the index collected from the same websites 7 days from today, 12:00PM (PST). Please note that these websites have a 10-20 minute delay on the quotes. Hence, at noon, if the last trade posted is $11: 45 \mathrm{AM}$, that is
the price we will be using. Bloomberg will be used for companies that are not listed with the exchanges from finance.yahoo.com and it also has 10-20 minute delay.

## Part 2: Bond or Options?

 digital call optionDigital Options:

the index value today, 0 otherwise. (You buy a put if you want to bet that the price will decrease)
 increase).

- Bond is a risk-free asset that pays 300 francs regardless of what happens to the value of the index

The choice that you will have to make in this portion of the experiment is shown in the example


Figure 2: Digital options example screen
As you can see, you are not guaranteed to receive a bond or an option. You will be given the
probability of receiving the choice you select.
In the above example, if you choose to receive a bond, you have $30 \%$ chance of actually
receiving it. If you do receive it, you will be paid 100 francs regardless of what happens to the

|  | Today's Index value is less than <br> next week's Index Value | Today's Index value is greater than next <br> week's index value |
| :--- | :--- | :--- |
| $30 \%$ chance | 300 Francs | 300 Francs |
| $70 \%$ chance | 0 | 0 |

Table 2: Payoff structure for the Bond
If you choose to receive a put option, then you have a $70 \%$ chance of receiving the option and $30 \%$ chance of receiving nothing. Note that when you do actually receive a put option, you are value today. See the table below to get a better understanding of the payoff.

|  | Today's Index value is less than <br> next week's Index Value | Today's Index value is greater than next <br> week's index value |
| :--- | :--- | :--- |
| $30 \%$ chance | 0 | 0 |
| $70 \%$ chance | 0 | 300 francs |

Table 3: Payoff structure for the Put option

| If you select a Put <br> option | Today's Index value is less than next <br> week's Index Value | Today's Index value is greater than <br> next week's index value |
| :--- | :--- | :--- |
| $30 \%$ chance | 0 | 0 |
| $70 \%$ chance | 300 francs | 0 |

Table 4: Payoff structure for the Call option
This is how the "chance" is determined in this section. If it states that there is a $30 \%$ chance of receiving a bond, it means the following: we will use a random number generator which gives a number from 1-100. If the number given is between 1 to 30 (inclusive), you will receive the
bond. Otherwise, you will not. Again, if it states that there is a $70 \%$ chance of receiving an option, it means the following: we will use a random number generator which gives a number from $1-100$. If the number is between 31 to 100 (inclusive), you will receive the option. Each of
the trials is independent of each other. This means that we will run the random number generator the trials is independent of each other. This mea
each time for each trial you have in this section
Payment: Your total payment from part 2 will be based on the outcome of every trial in this



## References

Ahearne, A. G., W. L. Griever, and F. E. Warnock (2003): "Information Costs and Home Bias: An Analysis of US Holdings of Foreign Equities," Journal of International Economics, 62(2), 313-336.

Bekaert, G., and C. R. Harvey (1995): "Time-varying World Market Integration," The Journal of Finance, 50, 403-444.

Bossaerts, P., P. Ghirardato, S. Guanaschelli, and W. Zame (2005):"Ambiguity and Asset Prices: An Experimental Perspective," Caltech Working Paper.

Camerer, C. F., and R. Karjalainen (1994): "Ambiguity-Aversion and NonAdditive Beliefs in Non-Cooperative Games: Experimental Evidence," in Models and Experiments in Risk and Rationality, ed. by M. J. Machina, and B. Munier, pp. 325358. Kluwer Academic Publishers.

Camerer, C. F., and M. Weber (1992): "Recent Developments in Modeling Preferences: Uncertainty and Ambiguity," Journal of Risk and Uncertainty, 5, 325-370.

Choquet, G. (1953-1954): "Theory of Capacities," Annales de l'Institut Fourier, 5, 131-295.

Cooper, I., and E. Kaplanis (1994): "Home Bias in Equity Portfolios, Inflation Hedging, and International Capital Market Equilibrium," The Review of Financial Studies, 7(1), 45-60.

Einhorn, H. J., and R. M. Hogarth (1985): "Ambiguity and Uncertainty in Probabilistic Inference," Psychological Review, 92, 433-461.

Ellsberg, D. (1961): "Risk, Ambiguity, and the Savage Axioms," Quarterly Journal of Economics, 75, 643-669.

Epstein, L. G. (1999): "A Definiton of Uncertainty Aversion," Review of Economic Studies, 66, 579-608.

Errunza, V., K. Hogan, and M. W. Hung (1999): "Can The Gains From International Diversification Be Achieved Without Trading Abroad," The Journal of Finance, 54, 2075-2107.

Fama, E. F. (1970): "Efficient Capital Markets: A Review of Theory and Empirical Work," The Journal of Finance, 25(2), 383-417.

French, K. R., and J. M. Poterba (1991): "Investor Diversification and International Equity Markets," The American Economic Review, 81(2), 222-226.

Gilboa, I., and D. Schmeidler (1989): "Maxmin Expected Utility with A NonUnique Prior," Journal of Mathematical Economics, 18, 141-153.

Glassman, D. A., and L. A. Riddick (2001): "What Causes Home Asset Bias and How Should It be Measured?," Journal of Empirical Finance, 8(1), 35-54.

Karolyi, G. A., and R. M. Stulz (2003): "Are Financial Assets Priced Locally or Globally?," in Handbook of the Economics of Finance, ed. by G. M. Constantinides, M. Harris, and R. M. Stulz, vol. 1, pp. 975-1014. Elsevier North Holland.

Kilka, M., and M. Weber (2002): "Home Bias in International Stock Return Expectations," The Journal of Psychology and Financial Markets, pp. 176-192.

Knight, F. (1921): Risk, Uncertainty and Profit. Houghton Mifflin.
Lewis, K. K. (1999): "Trying to Explain Home Bias in Equities and Consumption," Journal of Economic Literature, XXXVII, 571-608.

Nieuwerburgh, S. V., and L. Veldkamp (Forthcoming 2008): "Information Immobility and the Home Bias Puzzle," The Journal of Finance.

Sarin, R., and R. L. Winkler (1992): "Ambiguity and Decision MOdeling: A Preference-based Approach," Journal of Risk and Uncertainty, 5, 389-407.

Savage, L. J. (1954): The Foundations of Statistics. Wiley.
Schmeidler, D. (1989): "Subjective Probability and Expected Utility Without Additivity," Econometrica, 57, 571-587.

Segal, U. (1987): "The Ellsberg Paradox and Risk-Aversion: An Anticipated Utility Approach," International Economic Review, 28, 175-202.

Smith, V. L. (1969): "Measuring Nonmonetary Utilities in Uncertain Choices: The Ellsberg Urn," Quarterly Journal of Economics, 83, 324-329.


[^0]:    *I owe many thanks to Ming Hsu, Colin Camerer, Peter Bossaerts, John O'Doherty, David Grether, Jaksa Cvitanic and Eileen Chou for their helpful comments and discussions. The experiments were graciously funded by Colin Camerer. I also thank Walter Yuan for introducing me to the world of PHP, MySQL and Apache server. I am grateful to seminar participants at Caltech, ESA International Meeting and BDRM Conference. Existing errors are my sole responsibility.
    $\dagger$ Email: noah.myung@caltech.edu. Phone: 626-395-8772. Web: www.hss.caltech.edu/~noah and at the Naval Postgraduate School's Graduate School of Business and Public Policy starting Fall 2009.
    ${ }^{1}$ We will drop the term "equity" from here on out.

[^1]:    ${ }^{2}$ In terms of efficient market hypothesis, the prices should have already incorporated relevant informations.

[^2]:    ${ }^{3}$ www.php.net
    ${ }^{4}$ www.mysql.com
    ${ }^{5}$ www.pstnet.com/products/E-Prime

[^3]:    ${ }^{6}$ We do not have records of the results on the Ellberg's urn experiment for subjects from session 1 of the indices experiment due to technical error.

[^4]:    7 "Biggest company" was measured by a composite of sales, profits, assets, and market value. The list spans 51 countries and 27 industries.

[^5]:    ${ }^{8}$ Although not statistically significant, what we observe is that with familiar assets, ambiguity averse individuals are more likely to take the option than the bond compared to non-ambiguity averse people.

[^6]:    ${ }^{9}$ Note that the violation of the sure-thing principle is a necessary but not a sufficient condition for ambiguity aversion.

[^7]:    ${ }^{10}$ This is because a series of choices only provides 1 observation.

[^8]:    ${ }^{11}$ www.bloomberg.com

[^9]:    Table 8: Random-Effects Logit Regression: Decision for Indices
    IV: US Index: 1 if true, 0 otherwise. Familiarity: from 1-6 least to greatest. P-level: 30, 32, 34, or 36

