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Abstract:
We focus on the effects of changing costs of effort in the minimum-effort coordination game. We

find three main results. First, as the cost of effort increases, the level of effort decreases. Second, as
the cost of effort increases, the convergence speed to an equilibrium also increases. Third, the overall
efficiency (average payoff) does not monotonically decrease as the cost of effort increases. Average
payoff decreases for the most part but actually increases when the cost of effort is very high. Even
though groups are converging towards worse equilibria as the cost increases, they are converging
faster, and therefore lose less due to fewer periods of non-coordination. This non-monotonicity in
the average payoff suggests that individuals may be better off with higher costs of effort.
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1 Introduction

The inability to coordinate in economic interactions in which there are multiple equilibria can

lead to significant welfare losses. Though all players may be better off in one equilibrium, other

factors can make it difficult for players to coordinate to the Pareto-improved equilibrium. In these

situations, it is important to know which equilibrium is best and what causes certain equilibria to

be selected over others. The majority of work that has been done examining coordination problems

looks at which environments are good for coordination and how to avoid getting stuck in a “bad”

equilibrium. This paper differs from these works in that it not only examines the equilibrium

reached, but also focuses on the process of reaching equilibrium. Though the same equilibrium

may be reached in two different environments, the equilibrium may be reached more efficiently in

one environment, which could make overall welfare higher.

We focus our attention on the minimum-effort coordination game (MECG). In the MECG, the

player’s payoffs are determined by the group’s minimum effort while the cost is determined by

the individual’s own choice of effort. The MECG has multiple Pareto-ranked pure-strategy Nash

Equilibria in which each player exerts the same amount of effort. The MECG has been widely

studied as a simplified model used to examine a group’s ability to coordinate.

We examine the impact of having different costs of effort on the MECG. We run experiments

with five different cost parameters and provide three main results. First, there is a negative rela-

tionship between cost of effort and the average effort level. Therefore, as the cost of effort increases,

the players tend to converge to a Pareto-dominated equilibrium. Second, we find that the game

converges faster as the cost of effort increases. Furthermore, we find that the players deviate less

frequently after the convergence to an equilibrium when the cost of effort is higher. This is because

the cost of non-convergence is much higher when the cost of effort is higher. Lastly, we find a

non-monotonic relationship between the cost of effort and average payoff. Not surprisingly, the

average profit decreases as the cost of effort increases, for the most part. However, when the cost

of effort is very high, the increase in the cost may lead to higher average payoffs. This result is due

to a combination of negative and positive effects of increasing the cost of effort. The two negative

effects come from 1) the first result, which is the negative relationship between cost of effort and the
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average effort level, and 2) by the fact that for a given strategy profile, higher cost of effort provides

lower payoff. The positive effect comes from the second result, which is the faster convergence in

the game for higher cost of effort levels. Despite the two negative forces suggesting that payoffs

should be decreasing as the cost of effort increases, the positive force can be significant enough

to increase the average payoff. For relatively low costs, coordination failure is relatively cheap;

therefore, in the early periods players routinely exert effort above the minimum effort. When the

cost is very high, however, coordination failure is expensive; therefore, players are less likely to

experiment and exert effort above the minimum effort. In sum, we find that the gain in efficiency

from faster convergence actually outweighs the other forces, which are driving payoffs down as the

cost of effort increases.

The MECG has intrigued experimental economists for many years. The experimental laboratory

provides an ideal testing spot to determine which environments may lead to “good” and “bad”

equilibria in the game. Typical studies have examined the effect of two different environments on

a group’s ability to coordinate on the “good” equilibrium. Commonly studied parameters include

group size (Cooper, DeJong, Forsythe, and Ross (1990), Knez and Camerer (1994), Van Huyck,

Battalio, and Beil (1990), Weber (2006)) and cost of effort (Goeree and Holt (2005), Romero

(2011)). These papers typically found that coordination becomes more difficult as the size of the

group increased or as the cost of effort increased. Other papers have looked at the effect of adding

additional characteristics to the environment on the groups’ ability to coordinate. To name a

few, Cooper, DeJong, Forsythe, and Ross (1992) allowed group members to communicate, Cachon

and Camerer (1996) required an entry fee to join the group, and Myung (2009) had multiple

groups competing with each other. This paper is most similar to Goeree and Holt (2005) in which

the researchers ran experiments with varying cost of effort. They examined the MECG with a

continuous strategy space in which subjects faced one of two costs (c = 0.25 and c = 0.75). They

found that in the low cost treatment, effort levels were higher and gradually increased over time,

while in the high cost treatment, the effort levels were lower and typically decreased over time.

Our paper differs from the above works in several key aspects. First, rather than just analyzing

two parameter values, we consider five different levels of effort cost. This is important because it
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allows us to discover non-monotonicities which would be impossible to discover by testing only two

parameter values. One difficulty in using a large number of parameter values is that it requires

more experiments to be run, which requires more subjects. To better select the parameter values, a

computational model proposed by Romero (2010) was used to run simulations and determine precise

values for the parameters to be used in the experiments. In addition, we study the efficiency losses

that are caused by slower convergence to an equilibrium. This sheds an interesting new light on the

previously found result that groups with higher cost converge to lower effort equilibria. Though

higher costs tend to lead to worse equilibria, they are also associated with faster convergence, which

in the short-run can be beneficial to the group.

The paper is organized as follows. The next section contains a short introduction to the

minimum-effort coordination game. Next, we proceed with the testable hypotheses and our ex-

perimental design. We then provide the experimental results and the concluding remarks.

2 Minimum-Effort Coordination Game

The minimum-effort coordination game (MECG), also known as the weakest-link game, is a game

with N players in which each player chooses an effort level si ∈ {1, 2, ...,M}, where M is finite.

The players have payoff function

pi = αmin
j∈N
{sj} − csi + δ, (1)

where α > c > 0 and δ ∈ R for all players i ∈ N . The best response in this game is for player i to

match the lowest effort from everyone else:

si = min
j∈N\i

{sj}. (2)

Therefore, the set of pure-strategy Nash Equilibria contains any strategy profiles in which all players

exert the same effort level: σ = {s1, ..., sN}, where s1 = s2 = ... = sN . These equilibria are Pareto

ranked, with si = 1 being the worst and si = M being the Pareto optimal equilibrium.
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2.1 Hypotheses

We propose three hypotheses for our experiments on the MECG. As the cost of effort increases,

Hypothesis 1 (Effort Level) average effort decreases,

Hypothesis 2 (Convergence Speed) the game converges faster, and

Hypothesis 3 (Average Payoff) average payoff does not decrease monotonically. Average

payoff will decrease initially but will increase when the cost of effort is very high.

Hypothesis 1 is driven by the historical observation listed in the introduction as well as the

increase in the risk-dominance of the inefficient equilibrium.1 The previous literatures point to the

inability to coordinate to payoff dominant equilibrium increases when the cost of effort is higher.

Hypothesis 2 is driven simply by the structure of the game; not being able to coordinate causes

higher penalty, in both absolute payoff as well as percentage of payoff, when the cost of effort is

high. Lastly, hypothesis 3 is driven by the negative welfare effect of the higher cost of effort and the

positive welfare effect of the increase in the convergence speed of the game. When the convergence

speed is not fast, the lower average effort and the higher cost of effort decreases the average payoff.

When the cost is extremely high, the increase in the convergence speed decreases the loss in payoff

due to miscoordination. In other words, the ability to correctly coordinate to even the inefficient

equilibrium is better than attempting to coordinate to a Pareto-improving equilibrium but failing

to do so.

3 Experimental Design

3.1 Overview

The experiments were conducted at the California Social Science Laboratory (CASSEL) located

in the University of California, Los Angeles (UCLA). A total of 60 subjects participated in the

experiments. The average performance-based payment was 20USD with the standard deviation

of $1.55. All students were registered with the CASSEL and were recruited by the CASSEL’s

1For the MECG, for any two pair of equilibria, increasing cost of effort increases the risk-dominance of the
inefficient equilibrium with everything else held constant.
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electronic announcement system. The CASSEL consists of over 30 working computers divided into

cubicles, which prevents participants from viewing other participants’ screens.

The experiments were programmed and conducted with the experiment software z-Tree (Fischbacher

2007). The instructions were available both in print as well as on screen for the participants. The

experimenter explained the instructions in detail out loud. Participants were also given a brief quiz

after the instructions to ensure proper understanding of the game and the software. A copy of the

instructions and a sample screenshot are available in the appendix.

The subjects were randomly assigned to their roles in the experiment. Furthermore, everyone

participated in only one session. The identity of the participants as well as their individual decisions

were kept as private information. The experiments used a fictitious currency called francs. The

participants were fully aware of the sequence, payoff structure, and length of the experiment.

3.2 Details of the Experiment

There were a total of three sessions, and each session had 20 subjects. Each session consisted of five

blocks. At the beginning of each block, subjects were divided into five groups of four subjects each.

Each group of four subjects then proceeded to play a MECG repeatedly for 15 periods. After each

block, the subjects were randomly rematched (with replacement) to another group of four subjects

and were randomly reassigned another payoff parameter (with replacement). See Figure 1 for the

timeline.

Block 1 Block 2 Block 3 Block 4 Block 5

15 Periods 15 Periods 15 Periods 15 Periods 15 Periods

Rematch Rematch Rematch Rematch

Figure 1: Timeline and Matching Structure for the Experiment

Players played a MECG in which they chose an effort level, si ∈ {1, ..., 7}. Their payoff was

determined by the following function:

pi = 1000 min
j∈N
{sj} − csi + 5950. (3)
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Five different cost parameters were tested, c ∈ {50, 500, 900, 950, 990}. These parameters were

selected within the lower and upper bounds for the cost of effort, c ∈ (0, 1000), and to highlight

the extreme values as well as the middle value. The subjects were shown the payoff table displayed

in Table 1, with the calculations already completed for the subjects. The group size, the random-

ization, and the fact that everyone in the group was using the same payoff table were common

knowledge. However, the group’s own minimum effort was private information for the group and

was not available to the subjects outside of the group. Individuals were not told the effort levels of

all members in their group, just the minimum effort of the group.

Minimum Effort of All Players

i’s Effort 7 6 5 4 3 2 1

7 12950− 7c 11950− 7c 10950− 7c 9950− 7c 8950− 7c 7950− 7c 6950− 7c

6 − 11950− 6c 10950− 6c 9950− 6c 8950− 6c 7950− 6c 6950− 6c

5 − − 10950− 5c 9950− 5c 8950− 5c 7950− 5c 6950− 5c

4 − − − 9950− 4c 8950− 4c 7950− 4c 6950− 4c

3 − − − − 8950− 3c 7950− 3c 6950− 3c

2 − − − − − 7950− 2c 6950− 2c

1 − − − − − − 6950− c

Table 1: Sample Payoff Table That Was Used in the Experiment

Calculations were already filled in for the subjects.

4 Experimental Results

Figure 2 illustrates sample results from one block of sessions. Figure 2 (a) is an example in which

there is coordination on the payoff-dominant Nash equilibrium (converging to an effort level of 7),
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and Figure 2 (b) is an example in which there is a coordination on the worst equilibrium (converging

to an effort level of 1).
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(a) Coordination to High Effort (b) Coordination to Low Effort

Figure 2: Sample Results from Single Block of Session for Illustration Purposes

Otherwise specified, we treated each block as an independent observation. Therefore, the sample

size for each cost parameter c is n = 60.

4.1 Effort Level

The average effort level chosen in each period is displayed in Figure 3. First, we tested the hypothesis

that higher cost of effort leads to lower effort levels by the players. Results are taken from the

average effort level of the last five periods (
∑15

t=11
si,t
5 ) as one observation and are displayed in

Figure 4 and Table 2. Confirming our hypothesis, the mean effort level drops from 4.917 to 1.06

as the the cost parameter increases. When we focus our attention to blocks 3, 4, and 5 (the

experienced players), we obtain a stronger support for our hypothesis; the lowest effort level, equal

to one, occurs at c = 990, and the differences in means between various cost parameters are all

significant at p < 0.05 except when comparing the differences between c = 900 and c = 950 (n.s.).
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4.2 Convergence Speed

Comparing convergence speed is not as straightforward as comparing average effort level. Consider

the following example in Figure 5, which shows the period-by-period effort choices of one group of

players. If one were to use a rule that the convergence occurs when there are no deviations (i.e.,

everyone is best responding), then there would not have been any convergence until period 13 in the

example. However, starting in period 4, there were only two deviations in the final 11 periods. This

rule may be too conservative when studying experimental results. We compared the convergence

speed in three different ways. Each one of these measures has its strengths and weaknesses. First,

we compared the standard deviation of the effort levels. Next, we compared the best-response rate.

Finally, for any given period, we considered the number of different effort levels that were played

each period (the fewer, the more converged the group is).

We first consider the standard deviation of the effort levels being played in each period. Figure

6 graphs the standard deviation of the effort levels being played by various cost parameters. The

general idea is that the standard deviation should be low when a game converges to a pure-strategy

equilibrium. We break the analysis of standard deviation into two parts. First, we considered how

fast the standard deviation decreases in the first one-third of the game. We measured the rate of

change in the standard deviation per period by looking at the slope of the regression (SD = α+βt,

Table 3). Conditional on the initial starting point of the standard deviation, steepest downward

slope would indicate the fastest convergence.2 Supporting our hypothesis, the coefficients for c =

900, c = 950, and c = 990 are all negative and are steeper for higher costs of effort (p < 0.05). The

slope for c = 50 is no different from 0 and the slope at c = 500 is upward sloping (p < 0.05), which

indicates a lack of convergence.3 Second, we considered the average standard deviation for the final

two-thirds of the game (
∑15

t=6
SDc,t

10 , Table 4). The magnitudes of the average standard deviation are

SDc=500 = 2.538 > SDc=50 = 2.430 > SDc=950 = 0.973 > SDc=900 = 0.842 > SDc=990 = 0.522; all

but the difference between c = 900 and c = 950 are significant at p < 0.05. What we conclude from

2Of course, this would not be a fair measurement if the starting standard deviation is very small to begin with.
Our data does not have such a problem.

3Finding a slope of 0 for c = 50 and a positive slope of 0.043 for c = 500 added the following result. First, it is
harder to coordinate to the payoff-dominant equilibrium in the c = 500 case compared to the c = 50 case. Given
that the cost of effort is relatively low when c = 500, the players may be trying even harder to increase to the
payoff-dominant equilibrium, in turn, increasing the standard deviation of the effort levels.
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the average standard deviation is that the standard deviation is low (below 1) when cost is high

(c = {900, 950, 990}) and is high (above 2) when the cost is low (c = {50, 500}). Combining the

results from the speed of convergence in the first one-third of the game and the average standard

deviation in the last two-thirds of the game, we conclude that the game does indeed converge faster

with higher cost. When the cost is low, c = {50, 500}, we in fact do not see any convergence. This

is because the cost of miscoordination is relatively low. When the cost is the highest at c = 990,

we see the fastest decrease in the standard deviation and maintain the lowest average standard

deviation of the effort levels throughout.4

Next, we considered the best-response rate of the effort levels played across different costs of

effort (Figure 7). The best-response rate measures the percentage of players who are best responding

in the current period.5 Unlike using the standard deviation of effort levels, the best-response rate

is insensitive to how close or far a single player is from the equilibrium strategy. However, it

also penalizes severely in a situation in which three players may be playing the same effort level

while one player selects an effort level lower than others: {s, s, s, s − 1}; this has a best-response

rate of 0.25. Table 5 shows the averages of the best-response rates during the first five periods

(
∑5

t=1
BRi,t

5 ). The best-response rate is the lowest (average of 0.468) when the cost of effort is low

(c = {50, 500}) and highest (average of 0.708) when the cost of effort is high (c = {900, 950, 990})

with the difference being significant at p < 0.01. When we subdivide the groups by each cost level,

the best-response rates between c = 50 and c = 500, and between c = 900 and c = 950, are not

statistically different from one another. The best-response rate at c = 990 is six percentage points

higher than the best-response rate at c = 950 (p = 0.102) with an even stronger difference when

we focus on the experienced players (blocks 3, 4, and 5): a difference of 16.7 percentage points,

p < 0.01. Considering the average of the first five periods gives an indication of how fast the

game initially converges. Analyzing the average of the last five periods provides an indication of

sustaining the convergence as well as how well the game continues to converge. First, the best-

response rates are higher in the last five periods than the first five periods. Second, similar to the

4As a robustness check, we also regressed the entire 15 periods as SD = α+ β(1/t). The slopes are all significant
at p < 0.02 and the results are consistent with the results in this section.

5As a robustness check, we also measured the best-response rate as the percentage of players who are best
responding to the previous period’s minimum effort. The results are consistent.
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first five periods, the best-response rate is the lowest (average of 0.867) when the cost of effort is low

(c = {50, 500}) and highest (average of 0.960) when the cost of effort is high (c = {900, 950, 990})

with difference being significant at p < 0.01. However, we do not obtain significant differences

when we subdivide the groups by each cost level. In summary, we are only able to draw a weak

conclusion that best-response rate tends to increase as the cost of effort increases.

Finally, we considered both the number of effort levels being played in each group in each

period. Therefore, we would consider the game to be more converged if there were fewer effort

levels being played in a given period. We define this as similarness condition. The added benefit of

the similarness condition is that it does not unreasonably penalize cases in which one person may

deviate significantly away from the best response for just one period. By the same token, it also

means that this measure treats the following two strategy profiles as equally converged: {2, 2, 2, 3}

and {1, 7, 7, 7}. In addition, unlike the best response measure, similarness condition does distinguish

between {2, 2, 3, 3} and {2, 2, 3, 4}. Both strategy profiles have a best-response rate of 2, but the

former only has two effort levels being played while the latter has three. Therefore, the former

strategy profile should be considered closer to being converged than the latter.

Figure 8 shows the frequency of different numbers of effort levels being played for various costs

of effort. If the game is indeed converging faster under the similarness condition, we expect to see a

higher frequency of red and green, which indicates everyone playing the same effort level and three

people playing the same effort level, respectively. As the cost of effort increases, we observe an

increase in frequency of red and green. Furthermore, the frequency of red and green also increases

as the experiment proceeds (number of period increases). In other words, there are many different

effort levels being played in the initial period but the game converges as the periods continue.

Considering the evidence from three different ways of measuring convergence, we conclude that

the game converges faster to an equilibrium as the cost of effort increases. Furthermore, the fastest

sustained convergence is when the cost of effort is c = 990.

11



4.3 Average Payoff

Lastly, we analyzed the average payoff as a function of cost of effort. We hypothesized that the

average payoff will first decrease as the cost of effort increases but the average payoff will increase

when the cost is extremely high. Tables 7 and 8 show the average payoff of the first five periods

(
∑5

t=1
pi,t
5 ) and of the entire 15 periods by each cost parameter. As hypothesized, the average

payoff generally decreases as the cost of effort increases. This is expected due to the negative

welfare effect of the higher cost in effort and convergence to a lower equilibrium. When considering

the first five periods, average payoff is the highest at 9,148 when c = 50 (p < 0.01), and second

highest at 6,732 when c = 500 (p < 0.01). The average payoff level is not significantly different

when comparing the difference between c = 900 and c = 950 (5,159 and 5031, respectively). This

is the case when the positive effect of faster convergence offsets the average payoff of higher cost.

In fact, when the cost is c = 990, the average payoff is 5,261 and is higher than the average payoff

at c = 950 by 230 francs (p < 0.12). Furthermore, this effect is even stronger as the players gain

experience: the payoff at c = 990 is 415.7 francs higher than the payoff at c = 950 (p < 0.05).

The general results of the average payoff behavior do not change when we use the average of 15

periods (an entire block) instead of the average of the first five periods. However, as more periods

are played, the positive welfare (convergence speed) from the high cost of effort averages out with

the negative welfare (lower convergence point and higher cost of effort). Meaning, the difference in

average payoff, µ990 − µ950, will decrease as more periods are played. The difference in average is

230 francs when looking at the first five period averages, but the difference decreases to 90 francs

when looking at the 15 period averages. The same is true even with the experienced players; the

difference drops from 415.7 to 179.1. In other words, the non-monotonicity of average payoff is most

salient at the earlier phase of the game. This is due to the fact that the effects of non-convergence

in the early periods are diluted after many periods of convergence.

These results support our hypothesis of the non-monotonicity of the average payoff as a function

of cost of effort; the average payoff decreases as cost of effort increases, for the most part, but

increases when the cost of effort is very high.
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5 Conclusion

We performed a comparative statics of the minimum-effort coordination game via experiments.

The experiments are a nice tool to use for the comparative statics given the Pareto-ranked strict

Nash Equilibria structure of the MECG. In particular, we showed how the outcomes and behaviors

changed as the cost of effort changed. By running experiments across various cost parameters,

we were able to find results that may have been overlooked by experimenting over just two cost

parameters.

First, we showed that players exerted less effort and converged to a Pareto-dominated equilib-

rium as the cost of effort increased. Second, our results showed that the players also converged

faster to an equilibrium for higher levels of cost of effort. Lastly, the average payoff did not strictly

decrease as the cost of effort increased. In fact, the average payoff function is U-shaped, providing

an increasing average payoff as the cost of effort becomes very high.

The behavior in the average payoff is due to the welfare effects of the game. There are two

negative welfare effects and one positive welfare effect. The negative effect is from the convergence

to the lower minimum effort level and the fact that the players receive lower payoff for the exact

same strategy profile. The positive effect is from the increase in the convergence speed of the game.

Hence, the net outcome depends on the difference between the negative and the positive welfare

effects of having a higher cost of effort. This suggests that in certain situations, players may be

better off with higher effort costs as it means they will converge more quickly than they would with

intermediate effort costs.
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Appendix

A Tables

Blocks 1 through 5: n=60 Blocks 3, 4, and 5: n=36

Mean SE P-value Mean SE P-value

c = 50 4.917 0.314
0.167

4.489 0.423
0.045

c = 500 4.457 0.328 3.506 0.386

c = 500 4.457 0.328
0.000

3.506 0.386
0.000

c = 900 1.187 0.076 1.150 0.067

c = 900 1.187 0.076
0.692

1.150 0.067
0.677

c = 950 1.257 0.117 1.217 0.128

c = 950 1.257 0.117
0.061

1.217 0.128
0.048

c = 990 1.060 0.042 1.00 0.00

Table 2: Average Effort of Last Five Periods by Cost
Ho: mean(lower cost) - mean(higher cost) = diff = 0

Ha: diff > 0

Independent Variable Dependent Variables: Standard Deviation of Effort Levels

c = 50 c = 500 c = 900 c = 950 c = 990

Constant 2.135*** 2.112*** 2.777*** 2.936*** 2.630***

(0.096) (0.044) (0.129) (0.070) (0.340)

Period 0.008 0.043** -0.309*** -0.376*** -0.417**

(0.029) (0.013) (0.039) (0.021) (0.103)

R-squared 0.025 0.780 0.955 0.991 0.846

*p < 0.1, **p < 0.05, ***p < 0.01. (Two-tailed test).

Number of obs: 5 for each cost. Numbers in parentheses are standard errors.

Table 3: Regression: Standard Deviation of Effort Levels During First Five Periods
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Mean SE P-value

c = 50 2.430 0.018
0.001

c = 500 2.538 0.021

c = 500 2.538 0.021
0.000

c = 900 0.842 0.093

c = 900 0.842 0.093
0.286

c = 950 0.973 0.075

c = 950 0.973 0.075
0.002

c = 990 0.522 0.099

Table 4: Average Standard Deviation of Effort Levels During Last 10 Periods by Cost
Ho: mean(lower cost) - mean(higher cost) = diff = 0

Ha: diff ! = 0. n = 10 for each cost

Blocks 1 through 5: n=60 Blocks 3, 4, and 5: n=36

Mean SE P-value Mean SE P-value

c = 50 0.457 0.045
0.353

0.500 0.058
0.607

c = 500 0.480 0.042 0.478 0.057

c = 500 0.480 0.042
0.000

0.478 0.057
0.000

c = 900 0.687 0.032 0.739 0.038

c = 900 0.687 0.032
0.500

0.739 0.038
0.793

c = 950 0.687 0.039 0.689 0.047

c = 950 0.687 0.039
0.107

0.689 0.047
0.002

c = 990 0.750 0.033 0.856 0.031

Table 5: Average Best-Response Rate During First Five Periods
Ho: mean(lower cost) - mean(higher cost) = diff = 0

Ha: diff < 0
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Blocks 1 through 5: n=60 Blocks 3, 4, and 5: n=36

Mean SE P-value Mean SE P-value

c = 50 0.860 0.037
0.397

0.844 0.054
0.236

c = 500 0.873 0.035 0.894 0.044

c = 500 0.873 0.035
0.044

0.894 0.044
0.085

c = 900 0.943 0.021 0.961 0.019

c = 900 0.943 0.021
0.330

0.961 0.019
0.427

c = 950 0.957 0.022 0.967 0.023

c = 950 0.957 0.022
0.173

0.967 0.023
0.078

c = 990 0.980 0.011 1.000 0.000

Table 6: Average Best-Response Rate During Last Five Periods
Ho: mean(lower cost) - mean(higher cost) = diff = 0

Ha: diff < 0

Blocks 1 through 5: n=60 Blocks 3, 4, and 5: n=36

Mean SE P-value Mean SE P-value

c = 50 9148.167 223.659
0.000

9134.722 328.020
0.000

c = 500 6731.667 166.324 6447.222 179.792

c = 500 6731.667 166.324
0.000

6447.222 179.792
0.000

c = 900 5158.667 98.490 5358.333 107.397

c = 900 5158.667 98.490
0.240

5358.333 107.397
0.165

c = 950 5030.667 151.618 5175.833 152.232

c = 950 5030.667 151.618
0.113

5175.833 152.232
0.013

c = 990 5261.067 113.684 5591.500 102.900

Table 7: Average Payoff of First Five Periods by Cost
Ho: mean(lower cost) - mean(higher cost) = diff = 0

Ha: diff > 0 for c ∈ {50, 500, 900, 950}. Ha: diff < 0 for c ∈ {950, 990}
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Blocks 1 through 5: n=60 Blocks 3, 4, and 5: n=36

Mean SE P-value Mean SE P-value

c = 50 9791.333 268.269
0.000

9587.037 375.927
0.000

c = 500 7489.444 166.577 7075.000 196.268

c = 500 7489.444 166.577
0.000

7075.000 196.268
0.000

c = 900 5652.667 54.150 5769.630 46.402

c = 900 5652.667 54.150
0.204

5769.630 46.402
0.134

c = 950 5559.833 97.730 5628.704 117.619

c = 950 5559.833 97.730
0.210

5628.704 117.619
0.079

c = 990 5650.022 53.773 5807.833 43.352

Table 8: Average Payoff of 15 Periods by Cost
Ho: mean(lower cost) - mean(higher cost) = diff = 0

Ha: diff > 0 for c ∈ {50, 500, 900, 950}. Ha: diff < 0 for c ∈ {950, 990}
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Figure 3: Average Effort Level by Cost
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Figure 9: Average Payoff of First Five Period by Cost (All Blocks)
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Figure 10: Average Payoff of 15 Periods by Cost (All Blocks)
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